
Integrations Evaluation Process
Plugin
V5.3.0 (latest)



CONTENTS

1 Evaluation Process Plugin 1

2 Installing Evaluation Process Plugin 3

3 Uninstalling Evaluation Process Plugin 4

4 Arithmetic expressions 5

5 Bitwise Operations 9

6 Conditional and Comparison functions 15

7 Conversion functions 32

8 Cryptographic functions 37

9 Date/Time functions 40

10 Expression with Parentheses 46

11 Informational functions 47

12 Logical expressions 55

13 Mathematical functions 58

14 Multivalue functions 70

15 Relational expressions 81

16 Statistical functions 87

17 String functions 89

18 Trigonometric functions 102

i



CHAPTER

ONE

EVALUATION PROCESS PLUGIN

Evaluation Process Plugin installs the eval process command which evaluates
mathematical, boolean and string expressions during a Logpoint search and adds the
evaluation result in an identifier as a new field.

Important:

• Identifier name is not the same as an existing field name. If it is, Logpoint discards
the value of the identifier.

• When using a string value in an eval expression, always place the string within single
quotes (‘’).

• Eval expressions use the normalized field values from a log event to calculate the
evaluation result.

• Invalid expression generates error and halts search query.

Fig. 1: eval displaying Error Message

Syntax:

1



Evaluation Process Plugin Documentation, Release latest

| process eval("identifier=expression")

• Identifier: Contains result of evaluating expressions.

• Expression: A combination of numbers, variables, operators, functions, brackets
and punctuation marks grouped to represent a value.

The expressions are evaluated based on the following operator’s order:

1. Arithmetic: Multiplication (*) and Division (/) executed first.

2. Arithmetic: Addition (+) and Subtraction (-) evaluated after multiplication and
division.

3. Comparator or relational operators

4. Logical operators

Note: The higher priority of Power (^) over multiplication and division is not currently
considered.

Example:

| process eval("Revenue=unit_sold*Selling_price")

Fig. 2: Using eval Expression

Here, the query calculates the value of Revenue by multiplying the values of unit_sold
and Selling_price.

2

https://docs.logpoint.comhttps://docs.logpoint.com/docs/evaluation-process-plugin/en/latest/Arithmetic_expressions.html#multiplication
https://docs.logpoint.comhttps://docs.logpoint.com/docs/evaluation-process-plugin/en/latest/Arithmetic_expressions.html#division
https://docs.logpoint.comhttps://docs.logpoint.com/docs/evaluation-process-plugin/en/latest/Arithmetic_expressions.html#addition
https://docs.logpoint.comhttps://docs.logpoint.com/docs/evaluation-process-plugin/en/latest/Arithmetic_expressions.html#subtraction
https://docs.logpoint.comhttps://docs.logpoint.com/docs/evaluation-process-plugin/en/latest/Relational%20expressions.html#relational-expressions
https://docs.logpoint.comhttps://docs.logpoint.com/docs/evaluation-process-plugin/en/latest/Logical%20expressions.html#logical-expressions
https://docs.logpoint.comhttps://docs.logpoint.com/docs/evaluation-process-plugin/en/latest/Arithmetic_expressions.html#power


CHAPTER

TWO

INSTALLING EVALUATION PROCESS PLUGIN

Prerequisite

Logpoint v7.5.0 or later

To install Evaluation Process Plugin:

1. Download the .pak file from the Help Center.

2. Go to Settings >> System Settings from the navigation bar and click Applications.

3. Click Import.

4. Browse to the downloaded .pak file.

5. Click Upload.

After installing Evaluation Process Plugin, you can find it under Settings >> System
Settings >> Plugins.

3

https://servicedesk.logpoint.com/hc/en-us/articles/360000790238-Evaluation-Process-Plugin


CHAPTER

THREE

UNINSTALLING EVALUATION PROCESS PLUGIN

1. Go to Settings >> System Settings from the navigation bar and click Applications.

2. Click the Uninstall icon from Actions of Evaluation Process Plugin.

3. Click Yes.

4



CHAPTER

FOUR

ARITHMETIC EXPRESSIONS

Is the combination of numbers, operators and variables that results in a numeric value.

Generic Syntax:

| process eval("identifier = first_operand arithmetic_operator second_operand")

4.1 Addition (+)

Accepts numerical values as input for addition and generates the output in the
destination field (identifier). It also accepts string values as input and returns the
concatenation of values as the output.

Example:

| process eval("total_datasize=request_datasize+response_datasize")
| fields request_datasize, response_datasize, total_datasize

Here, the query calculates the value of the total_datasize identifier by adding the value
of the request_datasize and response_datasize fields.

The fields command displays the corresponding values of all the three fields in a tabular
form.

Fig. 1: Using addition function

5



Evaluation Process Plugin Documentation, Release latest

4.2 Subtraction (-)

Accepts numerical values as input for subtraction and generates the output in the
destination field (identifier).

Example:

| process eval("difference_in_datasize=request_datasize-response_datasize")
| fields request_datasize, response_datasize, difference_in_datasize

Here, the query calculates the value of the difference_in_datasize identifier by
subtracting the values of the response_datasize field from the request_datasize field.

The fields command displays the corresponding values of all three fields in a tabular
form.

Fig. 2: Using subtraction function

4.3 Multiplication (*)

Accepts numerical values as input for multiplication and generates the output in the
destination field (identifier).

Example:

| process eval("Revenue=unit_sold*Selling_price")
| fields unit_sold, Selling_price, Revenue

Here, the query calculates the value of the Revenue identifier by multiplying the values
of the unit_sold and Selling_price fields.

The fields command displays the corresponding values of all the three fields in a tabular
form.

4.2. Subtraction (-) 6



Evaluation Process Plugin Documentation, Release latest

Fig. 3: Using multiplication function

4.4 Division (/)

Accepts numerical values as input for the division and generates the output in the
destination field (identifier).

Example:

| process eval("price_per_unit=Selling_price/unit_sold")
| fields Selling_price, unit_sold, price_per_unit

Here, the query calculates the value of the price_per_unit identifier by dividing the
values of the unit_sold and Selling_price fields.

The fields command displays the corresponding values of all the three fields in a tabular
form.

Fig. 4: Using division function

4.5 Modulus (%)

Accepts numerical values as input for the division and generates the remainder of the
division as the output in the destination field (identifier).

Example:

4.4. Division (/) 7



Evaluation Process Plugin Documentation, Release latest

| process eval("modulo= Selling_price % cost_price ")
| fields Selling_price, cost_price, remainder

Here, the query calculates the value of the modulo identifier by finding the remainder
after dividing the value of the Selling_price field by cost_price field.

The fields command displays the corresponding values of all the three fields in a tabular
form.

Fig. 5: Using modulus function

4.6 Power (^)

Accepts numerical values as input for the power operation and generates the output in
the destination field (identifier).

Example:

| process eval("area_square=length^2")
| fields length, area_square

Fig. 6: Using power function

Here, the query calculates the value of the area_square identifier by squaring the value
of the length field.

The fields command displays the corresponding values of the two fields in a tabular
form.

4.6. Power (^) 8



CHAPTER

FIVE

BITWISE OPERATIONS

Allows users to include binary logic in their queries.

With this functionality, users:

• Apply bitwise AND, OR, XOR and NOT operations on values.

• Shift bit to left and right in binary digits.

• Count the number of 1 bits in a value’s binary representation.

Generic syntax:

| process eval("x=binary_and(1,1)")

5.1 binary_and

Accepts two or more integers and applies binary AND on them.

Example:

| process eval("and_value=binary_and(1,1)")

9



Evaluation Process Plugin Documentation, Release latest

Fig. 1: Using binary_and function

Here, each bit of the first operand is compared with the corresponding bit of the
second operand. If both bits are 1, corresponding result bit is set to 1, otherwise the
corresponding result bit is set to 0.

5.2 binary_or

Accepts two or more integers and applies binary OR on them.

Example:

| process eval("or_value=binary_or(0,6)")

5.2. binary_or 10



Evaluation Process Plugin Documentation, Release latest

Fig. 2: Using binary_or function

Here, each bit of the first operand is compared with the corresponding bit of the
second operand. If both bits are 0, corresponding result bit is set to 0, otherwise the
corresponding result bit is set to 1.

5.3 binary_not

Takes a non-negative integer as an argument and inverts every bit in the binary
representation of that number.

Example:

| process eval("not_value=binary_not(0)")

5.3. binary_not 11



Evaluation Process Plugin Documentation, Release latest

Fig. 3: Using binary_not function

5.4 binary_xor

Takes two or more nonnegative integers as arguments and sequentially applies bitwise
XOR operations on each of the given arguments.

Example:

| process eval("xor_value=binary_xor(5,10)")

Fig. 4: Using binary_xor function

5.4. binary_xor 12



Evaluation Process Plugin Documentation, Release latest

5.5 binary_right_shift

Takes two valid nonnegative integers as arguments and shifts the binary representation
of the first integer over to the right by the specified shift offset amount.

Example:

| process eval("right_shift_value=binary_right_shift(9,1)")

Fig. 5: Using binary_right_shift function

5.6 binary_left_shift

Takes two valid nonnegative integers as arguments and shifts the binary representation
of the first integer over to the left by the specified shift offset amount.

Example:

| process eval("left_shift_value=binary_left_shift(9,1)")

5.5. binary_right_shift 13



Evaluation Process Plugin Documentation, Release latest

Fig. 6: Using binary_left_shift function

5.7 binary_count_ones

Counts the number of 1’s in a binary number.

Example:

| process eval("binary_count_value=binary_count_ones(12)")

Fig. 7: Using binary_count_ones function

5.7. binary_count_ones 14



CHAPTER

SIX

CONDITIONAL AND COMPARISON FUNCTIONS

Conditional functions evaluate specific conditions or logical expressions and return a
value based on whether the condition is true or false. These functions are used to apply
logic within queries.

Comparison functions evaluate relationships between values, such as equality,
inequality, or relative size. Based on the comparison, they return a true or false result.

In scenarios involving multiple If, If-else, and If-elseif-else statements, use the case
keyword to streamline these statements.

Important: Case keyword’s functionality differs from that of the Case statement.

6.1 If Statement

The if statement takes a condition and a string value, X, and evaluates the condition; if
it’s true, it returns the value of X. When using a negative number in an if condition, it
should be enclosed in parentheses ‘()’ for clarity.

Syntax:

| process eval("identifier=if(condition) {return X}")

or

| process eval("identifier = case(condition -> result)")

Example 1:

| process eval("User_severity=if(risk_score >= 5) {return 'Risk user'}")
| chart count() by risk_score, User_severity

15



Evaluation Process Plugin Documentation, Release latest

Fig. 1: Using if statement function

Here, the query checks if the risk_score field’s value is greater than or equal to 5 and
returns Risk user value in the User_severity identifier.

The chart count() command displays the count of the combination of risk_score and
User_severity values as a chart and in a tabular form.

Example 2:

A log with cpu_usage = 70.

Query:

| process eval("alert=case(
cpu_usage > 50 -> 'High',
cpu_usage > 20 -> 'Medium',
cpu_usage > 0 -> 'Low',
true -> 'Invalid')")

Output:

alert = High

Here, the case keyword sequentially evaluates multiple if conditions and returns High
value in the alert identifier.

6.2 If-else Statement

The if-else statement takes a condition and two string values, X and Y, and evaluates the
condition; if it’s true, it returns the value of X; if it isn’t, it returns the value of Y. When
using a negative number in an if condition, it should be enclosed in parentheses ‘()’ for
clarity.

Syntax:

| process eval("identifier=if(condition) {return X} else {return Y}")

or

6.2. If-else Statement 16



Evaluation Process Plugin Documentation, Release latest

| process eval("identifier = case(condition1 -> result1, condition2 -> result2, ...)")

Example 1:

| process eval("is_profitloss=if((Selling_price%cost_price) == 0)
{return 'No profit/loss'} else {return 'profit/loss'}")
| fields Selling_price, cost_price, is_profitloss

Fig. 2: Using if-else statement function

Here, the query checks if the remainder value when Selling_price field is divided by
cost_price field is 0. It returns No profit/lost in the is_profitloss identifier if the
condition is true, if it isn’t it returns profit/loss.

The fields command displays the value of Selling_price, cost_price and is_profitorloss
in a tabular form.

Example 2:

A log with response_time = 90

Query:

| process eval("time=case(
(response_time > 200 && response_time < 500) -> 'Big',
(response_time >= 100 && response_time <= 200) -> 'Medium',
(response_time < 100) -> 'Low',
true -> 'Invalid')")

Output:

time = Low

6.2. If-else Statement 17



Evaluation Process Plugin Documentation, Release latest

Here, the case keyword sequentially evaluates multiple if-else conditions and returns
Low value in the time identifier.

If the first condition were false, the second condition would be evaluated, and so on.
If all specified conditions failed, the true -> ‘Invalid’ condition would ensure time =
invalid.

6.3 If-elseif-else Statement

It takes one or more alternating conditions and values. It compares the condition in the
following order.

• If the first condition is true, it returns the value provided in X,

• If it isn’t true, it compares the second condition;

• If the second condition is true, it returns the value provided in Y,

• If it isn’t true, it returns the value provided in Z.

When using a negative number in an if condition, it should be enclosed in parentheses
‘()’ for clarity.

Syntax:

| process eval("identifier=if(condition){return X} else-if(condition) {return Y} else { return Z}")

or

| process eval("identifier = case(condition1 -> result1, condition2 -> result2, condition3 ->�
↪→result3, default_case)")

Example 1:

| process eval("User_severity=if(risk_score > 5) {return 'Risk user'}
else-if(risk_score<=0) {return 'No risk'} else {return 'Normal user'}")
| fields risk_score, User_severity

Fig. 3: Using if-elseif-else statement function

6.3. If-elseif-else Statement 18



Evaluation Process Plugin Documentation, Release latest

Here, the query checks if the risk_score field’s value is greater than 5. It returns Risk
user in the User_severity identifier if the condition is true, if it isn’t it compares the
second condition. It checks if the risk_score field’s value is less than or equal to 0 and
returns No risk if true. If both of these conditions is false, it returns Normal user.

The fields command displays the value of risk_score and User_severity in a tabular
form.

Example 2:

A log with serverity = Medium and event_type = Network Activity.

Query:

| process eval("event_category=case(
(severity == 'Critical' && event_type == 'Malware Detection') -> 'High Priority - Immediate�

↪→Attention',
(severity == 'High' && event_type == 'Authentication') -> 'Medium Priority - Review',
(severity == 'Medium' && event_type == 'Network Activity') -> 'Low Priority - Monitor',
(severity == 'Low' && event_type == 'Authentication') -> 'Informational - No Action Needed',
(severity == 'Low' && event_type == 'Network Activity') -> 'Informational - Monitor',
true -> 'Invalid Event Data')")

Output:

event_category = Low Priority - Monitor

Here, the case keyword sequentially evaluates multiple If-elseif-else conditions and
returns Low Priority - Monitor value in the event_category identifier.

6.4 Case Statement

Accepts one or more alternating conditions and values. It compares the condition with
the following order.

• if case_one matches the value of the data, it returns the value provided in X,

• if it doesn’t match, it checks if the case_two matches the value of the data;

• if the condition is true, it returns the value in Y,

• if it isn’t it returns the value in Z by default.

Syntax:

| process eval("identifier=switch(data) {case(case_one) {return X}
case(case_two) {return Y} default {return Z}}")

Example:

6.4. Case Statement 19



Evaluation Process Plugin Documentation, Release latest

| process eval("Access_type=switch(action) {case('allow') {return 'Allow access'}
case('deny') {return 'Deny access'} default {return 'Forward access'}}")
| fields action, Access_type

Fig. 4: Using case statement function

Here, the query returns Allow access in the Access_type identifier if the action field’s
value is access. If it isn’t, it checks if the value of action is deny and returnsDeny access.
If both values don’t match, it returns Forward access by default.

The fields command displays the value of action and Access_type in a tabular form.

6.5 cidrmatch

Accepts two arguments, a CIDR (Classless Inter-Domain Routing) notation, and an IP
address. It returns true if the IP address matches the CIDR notation, if it doesn’t it
returns false.

Syntax:

| process eval("identifier=cidrmatch(CIDR, IP)")

Example:

| process eval("is_local_ip=cidrmatch('127.0.0.0/8', device_ip)")

Fig. 5: Using cidrmatch function

6.5. cidrmatch 20



Evaluation Process Plugin Documentation, Release latest

Here, the query returns true in the is_local_ip identifier if the device_ip field’s value
matches the CIDR notation 127.0.0.0/8, if it doesn’t match it returns false.

6.6 coalesce

Accepts an arbitrary number of arguments as input and returns the value of the first
argument that is not null.

Syntax:

| process eval("identifier=coalesce(X,Y,...)")

Example:

| process eval("ip_add=coalesce(ip_address,device_ip)")
| fields ip_address, device_ip, ip_add

Fig. 6: Using coalesce function

Here, the query returns the ip_address field’s value in the ip_add identifier if the value
is not null. If it is null, it checks the value of the device_ip field. If the device_ip field’s
value is not null, it returns its value in the ip_add identifier.

The fields command displays the value of ip_address, device_ip and ip_add in a tabular
form.

6.7 false

Returns false. The function in combination with other functions represents a condition
that is absolutely false, 1==0. Unlike other functions, this function does not take any
argument.

Syntax:

6.6. coalesce 21



Evaluation Process Plugin Documentation, Release latest

| process eval("identifier=false()")

Example:

| process eval("is_profit=if(Selling_price > cost_price) {return true()} else {return false()}")
| chart count() by Selling_price, cost_price, is_profit

Fig. 7: Using false function

Here, the query checks the value in the Selling_price and cost_price fields. It returns
true in the is_profit identifier if the Selling_price is greater than the cost_price, if it
isn’t it returns false.

The chart count() command displays the count of the combination Selling_price and
cost_price values as a chart and in a tabular form.

6.8 in

Accepts a field of an event and a list of string values. It returns true if one of the values
in the list matches the value specified in the field, if it doesn’t it returns false.

Syntax:

| process eval("identifier=in(field, value1, value2, value3, ...)")

Example:

6.8. in 22



Evaluation Process Plugin Documentation, Release latest

| process eval("isUserAdmin=in(user, 'Administrator', 'administrator', 'Admin', 'admin')")
| chart count() by user, isUserAdmin

Fig. 8: Using in function

Here, the query returns true in the isUserAdmin identifier if the user field’s value
matches with any one value in the list: Administrator, administrator, Admin and admin,
if it does’t it returns false.

The chart count() command displays the count of the combination of user and
isUserAdmin values as a chart and in a tabular form.

6.9 match

Accepts a text field X and a regex (regular expression) string. It returns true or false
based on whether the given regular expression finds a match against any substring of
the text in the field X.

It also returns true if the text in regex string exactly matches the text in the field X.

Syntax:

| process eval("identifier=match(X, regex)")

Example:

| process eval("is_coltype_filesystem=match(col_type,'file.*')") | chart count() by col_type, is_
↪→coltype_filesystem

6.9. match 23



Evaluation Process Plugin Documentation, Release latest

Fig. 9: Using match function

Here, the query compares the regex string file. with the value in the col_type field. It
returns true in the is_coltype_filesystem identifier if the pattern is an exact match or is
a substring of the col_type field’s value, if it doesn’t match it returns false.

The chart count() command displays the count of the combination of col_type and
is_coltype_filesystem values as a chart and in a tabular form.

6.10 like

Accepts a text field X and a pattern. It returns true if the text in X matches the given
pattern, if it doesn’t match it returns false. This function also returns true if the text in
the pattern exactly matches the text in the X field.

The pattern supports a regular expression as well as the percent character (%) for
wildcards and an underscore character (_) for a single character match.

Syntax:

| process eval("identifier=like(X, pattern)")

Example:

| process eval("is_coltype_syslog=like(col_type,'sys%')")
| chart count() by col_type, is_coltype_syslog

6.10. like 24



Evaluation Process Plugin Documentation, Release latest

Fig. 10: Using like function

Here, the query compares the sys% pattern with the col_type field’s value. It returns
true in the is_coltype_filesystem identifier if the sys% pattern is an exact match or is a
substring of the col_type field’s value, if it doesn’t match it returns false.

The chart count() command displays the count of the combination of col_type* and
**is_coltype_syslog values as a chart and in a tabular form.

6.11 null

Returns null. You use the null function in combination with other functions. Use this
function if you do not want any value returned in the user interface. Unlike other
functions, this function does not take any argument.

Syntax:

| process eval("identifier=null()")

Example:

| process eval("User_severity=if(score <= 5) {return null() } else {return 'Risk user'}")
| chart count() by score, User_severity

6.11. null 25



Evaluation Process Plugin Documentation, Release latest

Fig. 11: Using null function

Here, the query returns null in the User_severity identifier if the score field’s value is
less or equal to 5, if it isn’t it returns Risk user.

The chart count() command displays the count of the combination of score and
User_severity values as a chart and in a tabular form.

6.12 nullif

Compares two arguments: X and Y. If X = Y, it returns null, if it isn’t equal it returns the
value of X.

Syntax:

| process eval("identifier=nullif(X, Y)")

Example:

| process eval("access_type=nullif(access,'DELETE')")
| chart count() by access, access_type

6.12. nullif 26



Evaluation Process Plugin Documentation, Release latest

Fig. 12: Using nullif function

Here, the query returns null in the access_type identifier if the access field’s value is
DELETE, if it isn’t it returns the value of the access.

The chart count() command displays the count of the combination of access and
access_type values as a chart and in a tabular form.

6.13 searchmatch

Accepts a string field X as input. It returns true if the value of X matches the event type,
if it doesn’t match it returns false. You can use the pipe ( | ) symbol to separate multiple
values of X.

Syntax:

| process eval("identifier=searchmatch(X)")

Example:

| process eval("is_authenticaion_event=searchmatch('Authentication | Access')")

6.13. searchmatch 27



Evaluation Process Plugin Documentation, Release latest

Fig. 13: Using searchmatch function

Here, the query returns null in the is_authentication_event identifier if the access field’s
value is DELETE, if it isn’t it returns false.

6.14 true

Returns true. It is often used in combination with other functions to represent a
condition that is undoubtedly true, 1==1. Unlike other functions, this function does
not take any argument.

Syntax:

| process eval("identifier=true()")

Example:

| process eval("is_profit=if(Selling_price > cost_price) {return true()} else {return false()}")
| chart count() by Selling_price, cost_price, is_profit

6.14. true 28



Evaluation Process Plugin Documentation, Release latest

Fig. 14: Uisng true function

Here, the query returns true in the is_profit identifier if the Selling_price field’s value is
greater than the value of the cost_price field. If it isn’t, it returns false.

The chart count() command displays the count of the combination of Selling_price,
cost_price and is_profit values as a chart and in a tabular form.

6.15 contains

Accepts three arguments: X, Y and Z. It returns true if the value of X is within Y
separated by a delimiter Z. If X is not listed, the function returns false. In the absence
of a delimiter, the comma is a default delimiter.

Syntax:

| process eval("identifier=contains(X, Y, Z)")

Example:

6.15. contains 29



Evaluation Process Plugin Documentation, Release latest

| process eval("exists=contains('log','/var/log/syslog', '/') ")

Fig. 15: Using contains function

Here, the query returns true in the exists identifier if the log* string is within
/var/log/syslog string separated by / delimiter. If the log string is not listed, the
function returns false.

6.16 has_any

Checks a string or its sub strings from data with any list of case-insensitive strings. It
accepts two arguments: X and Y. It returns true if X or substring of X is present in Y, if
it isn’t present it returns false.

Syntax:

| process eval("identifier=contains(X, Y)")

X: It is a string.

Y: It is a list.

Example 1:

| process eval("result = has_any('hi.exe', '.exe,.dmg')")

6.16. has_any 30



Evaluation Process Plugin Documentation, Release latest

Fig. 16: Using has_any function

Here, the query searches hi.exe string in the .exe,.dmg list and return true value in
result field as the substring .exe is present in the list.

Example 2:

| process eval("result=has_any('This was a language.',kb_list)")

Fig. 17: Using has_any function

Here, the query searches This was a language. string or its sub string in the kb_list and
returns true value in result field.

6.16. has_any 31



CHAPTER

SEVEN

CONVERSION FUNCTIONS

Converts numbers and strings to different formats.

7.1 printf

Accepts a string format and arguments as input and returns a formatted string value
based on these input.

Syntax:

| process eval("identifier=printf(format, arguments)")

• format: A character string that comprises one or more format conversion specifiers.
It must always be within single quotes (‘ ‘).

• arguments: Includes one or more string, number or field name.

Example:

| process eval("result=printf('Hello %s. Your user score is %d.',user,score)")
| fields user, score, result

Fig. 1: Using printf function

32



Evaluation Process Plugin Documentation, Release latest

Here, the query assigns the value of the user field to %s and score field to %d and
returns the defined sequence of strings in the result identifier.

The fields command displays the value of the user, score and result in a tabular form.

7.2 tonumber

Accepts a string value X and a BASE as input. It converts the string X to a number by
the specified BASE.

Syntax:

| process eval("identifier=tonumber(X, BASE)")

• X can be a field name or a string value.

• The BASE defines the base number to convert the string value X. It can range from
2 to 36.

Example:

| process eval("result=tonumber('0A5',12)")

Fig. 2: Using tonumber function

Here, the query converts the string value 0A5 to a number by taking base 12 and returns
it in the result identifier.

7.3 toint

Accepts an argument Y of string, long or double type as input and converts the value
of Y to integer and assigns the converted value to X field.

Syntax:

7.2. tonumber 33



Evaluation Process Plugin Documentation, Release latest

| process eval("X=toint(Y)")

Example:

| process eval("x=toint(rule_trigger_id)")

Fig. 3: Using toint function

Here, the query converts the value of rule_trigger_id to integer and assigns the value
to x field.

7.4 toreal

Accepts an argument X of string or long type as input and converts the value of X to
double and assigns the converted value to Y field.

Syntax:

| process eval("Y=toreal(X)")

Example:

| process eval("y=toreal(severity)")

Fig. 4: Using toreal function

Here, the query converts the value of severity to double type and assigns the value in
y.

7.4. toreal 34



Evaluation Process Plugin Documentation, Release latest

7.5 tostring

Accepts at least one argument X as input and converts the input value X to a string. If
X is a number, the second field Y can be “hex,” “commas,” or “duration.” Y is optional.

Syntax:

| process eval("identifier=tostring(X, Y)")

• If X is a number, the function converts the number to a string,

• If X is a Boolean value, it returns the corresponding string value, True or False.

Syntax Description
tostring(X, “hex”) Converts the input value X to hexadecimal.
tostring(X, “commas”) Formats the input value X with commas. If the number

includes decimals, it is rounded to the nearest two
decimal places.

tostring(X, “duration”) Converts the input value X (in seconds) to the readable
time format HH:MM:SS.

Example 1:

| process eval("x=tostring(12)")

Here, the query converts the numeric value of 12 to string.

Example 2:

| process eval("result=tostring(score,'hex')")

Fig. 5: Using tostring function

Here, the query converts the numeric value of the score field to its corresponding
hexadecimal string value and assigns it in the result identifier.

Example 3:

7.5. tostring 35



Evaluation Process Plugin Documentation, Release latest

| process eval("x=tostring(65,'duration')")

Here, the query converts the numeric value 65 into the readable time format HH:MM:
and returns it in the x identifier.

Example 4:

| process eval("x=tostring(65132.6789,'commas')")

Here, the query formats the numeric value 65132.6789 with a comma and rounds the
decimal value to the two decimal place (hundredths position) and returns it in the x
identifier.

7.5. tostring 36



CHAPTER

EIGHT

CRYPTOGRAPHIC FUNCTIONS

Evaluates hash functions and returns a fixed-size alphanumeric string.

8.1 md5

Accepts a string value X as input and returns themd5 hash of the string value. Themd5
is a hash function that generates a 128-bit hash value of the string.

Syntax:

| process eval("identifier=md5(X)")

Example:

| process eval("hash=md5(device_name)")

Fig. 1: Using md5 function

Here, the query converts the device_name field value into its corresponding md5 hash
value and returns the value 421AA90E079FA326B6494F812AD13E79 in the hash
identifier.

37



Evaluation Process Plugin Documentation, Release latest

8.2 sha1

Accepts a string value X and returns the sha1 hash of the string value. The sha1 is
a cryptographic hash function that generates a 160-bit (20-byte) hash value, typically
rendered as a hexadecimal number, 40 digits long.

Syntax:

| process eval("identifier=sha1(X)")

Example:

| process eval("sha1_value=sha1(device_name)")

Fig. 2: Using sha1 function

Here, the query returns the corresponding sha1 hash value of device_name* in the
sha1_value identifier.

8.3 sha256

Accepts a string value X and returns the sha256 hash of a value. The sha256 is a
cryptographic hash function that generates an almost-unique 256-bit (32-byte) hash
value, typically rendered as a hexadecimal number, 64 digits long.

Syntax:

| process eval("identifier=sha256(X)")

Example 1:

| process eval("sha256_value=sha256(device_name)")

8.2. sha1 38



Evaluation Process Plugin Documentation, Release latest

Fig. 3: Using sha256 function

Here, the query returns the corresponding sha256 hash value of the device_name in
the sha256_value identifier.

8.4 sha512

Accepts a string value X and returns the sha512 hash of a value. The sha512 is a
cryptographic hash function that generates an almost-unique 512-bit (32-byte) hash
value, typically rendered as a hexadecimal number, 128 digits long.

Syntax:

| process eval("identifier=sha512(X)")

Example:

| process eval("sha512_value=sha512(device_name)")

Fig. 4: Using sha512 function

Here, the query returns the corresponding sha512 hash value of the device_name in
the sha512_value identifier.

8.4. sha512 39



CHAPTER

NINE

DATE/TIME FUNCTIONS

Evaluates the date and time values in the YYYY/MM/DD format. You can customize the
date/time format according the Date/Time patterns described in this page.

9.1 now

Returns the UNIX time when the search starts. Unlike other functions, this function does
not take any argument.

Syntax:

| process eval("identifier=now()")

Example:

| process eval("search_time=now()")

Fig. 1: Using now function

Here, the query returns the UNIX time of the search process in the search identifier.

9.2 relative_time

Accepts two arguments: a UNIX time X and a relative time specifier Y as input, and
returns a UNIX time by adding or deducting the value of Y from the value of X.

40



Evaluation Process Plugin Documentation, Release latest

Syntax:

| process eval("identifier=relative_time(X, Y)")

• The operator used in Y can be either + or -.

• The format specifier of time is s for a second, m for a minute, h for an hour, d for a
day and w for a week.

Example:

| process eval("result=relative_time(now(), '+1d')")

Fig. 2: Using relative time function

Here, the query adds time equivalent of 1 day or 24 hours to the current UNIX time and
returns it in the result identifier.

9.3 strftime

Accepts a UNIX time X and returns the time as a string using the date and time format
specified in Y. The UNIX time value must be in seconds.

Syntax:

| process eval("identifier=strftime(X, Y)")

Example:

| process eval("day_in_year=strftime(now(), 'DD')")

9.3. strftime 41



Evaluation Process Plugin Documentation, Release latest

Fig. 3: Using strftime function for day in year

Here, the query accepts the current UNIX time and returns the total number of days in
a year in the day_in_year identifier.

Example:

| process eval("search_date=strftime(now(), 'YYYY/MM/dd')")

Fig. 4: Using strftime function for day in month

Here, the query accepts the current UNIX time and displays the time in YYYY/MM/dd
format in the search_date identifier.

The Timezone parameter in the strptime function converts date and time values based
on timezone, defined by a fixed offset from Greenwich Mean Time (GMT). By default,
the timezone of a machine is used for the conversion. It is an optional parameter.

Syntax:

GMTOffsetTimeZone:
GMT Sign Hours : Minutes

Sign: one of
+ -

Hours:
Digit
Digit Digit

Minutes:
Digit Digit

Digit: one of
0 1 2 3 4 5 6 7 8 9

9.3. strftime 42



Evaluation Process Plugin Documentation, Release latest

Example:

| process eval("identifier=strftime(now(), 'yyyy-MM-dd hh:mm:ss', 'GMT+4:45')")

9.4 strptime

Accepts a human readable time specified in X and converts it into a UNIX timestamp
using the date and time format specified in Y.

Syntax:

| process eval("identifier=strptime(X, Y)")

Example:

| process eval("searchtime=strptime('2017-12-12', 'yyyy-mm-dd')")

Fig. 5: Using strptime function

Here, the query accepts human readable time and converts it to a UNIX timestamp. It
returns the converted time in the searchtime identifier.

The Timezone parameter in the strptime function converts date and time values based
on timezone, defined by a fixed offset from Greenwich Mean Time (GMT). By default,
the timezone of a machine is used for the conversion. It is an optional parameter.

Syntax:

GMTOffsetTimeZone:
GMT Sign Hours : Minutes

Sign: one of
+ -

Hours:
Digit
Digit Digit

Minutes:
Digit Digit

(continues on next page)

9.4. strptime 43



Evaluation Process Plugin Documentation, Release latest

(continued from previous page)

Digit: one of
0 1 2 3 4 5 6 7 8 9

Example:

| process eval("identifier=strptime('2022-08-12', 'yyyy-MM-dd', 'GMT-9:45')")

9.5 time

Takes no argument and returns the UNIX time on which the eval process command
processes the command. The returned time is the time when the eval command
processed the event.

Syntax:

| process eval("identifier=time()")

Example:

| process eval("process_time=time()")

Fig. 6: Using time function

Here, the query returns the time of the eval command execution in the process_time
identifier.

9.6 Date/Time patterns

The list of all possible patterns in the date/time function.

9.5. time 44



Evaluation Process Plugin Documentation, Release latest

Letter Date or Time Component Presentation Examples
G Era designator Text AD
y Year Year 1996; 96
Y Week year Year 2009; 09
M Month in year (context sensitive) Month July; Jul; 07
L Month in year (standalone form) Month July; Jul; 07
w Week in year Number 27
W Week in month Number 2
D Day in year Number 189
d Day in month Number 10
F Day of week in month Number 2
E Day name in week Text Tuesday; Tue
u Day number of week (1 =Monday, …,

7 = Sunday)
Number 1

a Am/pm marker Text PM
H Hour in day (0-23) Number 0
k Hour in day (1-24) Number 24
K Hour in am/pm (0-11) Number 0
h Hour in am/pm (1-12) Number 12
m Minute in hour Number 30
s Second in minute Number 55
S Millisecond Number 978
z Time zone General time

zone
Pacific Standard
Time; PST;
GMT-08:00

Z Time zone RFC 822 time
zone

-0800

X Time zone ISO 8601
time zone

-08; -0800; -08:00

9.6. Date/Time patterns 45



CHAPTER

TEN

EXPRESSION WITH PARENTHESES

Parentheses clarify the order of expressions, for example the eval command first
evaluates the parts of expression contained within the parentheses.

Example:

| process eval("Profit_percent=(Selling_price-cost_price)/cost_price * 100")
| fields Selling_price, cost_price, Profit_percent

Fig. 1: Using expression with parentheses

Here, the query calculates the specified arithmetic expression and returns its value in the
Profit_percent identifier. While performing the calculation, the function first evaluates
the part of the expression within the parentheses, (Selling_price-cost_price), then it
uses this result in the rest of the expression.

The fields command displays the value of Selling_price, cost_price and Profit_percent
in a tabular form.

46



CHAPTER

ELEVEN

INFORMATIONAL FUNCTIONS

Evaluates the information of arguments.

11.1 isbool

Accepts one argument X and returns true if the value of X is Boolean. If the value is not
a Boolean, it returns false.

Syntax:

| process eval("identifier=isbool(X)")

Example:

| process eval("is_loss=Selling_price<cost_price")
| process eval("boolean_result=isbool(is_loss)")
| chart count() by Selling_price, cost_price, is_loss, boolean_result

47



Evaluation Process Plugin Documentation, Release latest

Fig. 1: Using isbool function

Here, the query first evaluates if the Selling_price is less than cost_price and returns its
value in the is_loss identifier. Then, it returns true in the boolean_result identifier if the
value in the is_loss field is Boolean. If the value is not a Boolean, the function returns
false.

The chart count() command displays the count of the combination of Selling_price,
cost_price, is_loss and boolean_result values as a chart and in a tabular form.

11.2 isint

Accepts one argument X and returns true if the value of X is an integer. If the value is
not an integer, the function returns false.

Syntax:

| process eval("identifier=isint(X)")

Example:

| process eval("isscore_int=isint(score)") | fields score, isscore_int

11.2. isint 48



Evaluation Process Plugin Documentation, Release latest

Fig. 2: Using isint function

Here, the query returns true in the isscore_int identifier if the value in the score field is
an integer. If the value is not an integer, the function returns false.

The fields command displays the value of score and isscore_int in a tabular form.

11.3 isnotnull

Accepts one argument X and returns true if the value of X is not null. If the value is null,
the function returns false.

Syntax:

| process eval("identifier=isnotnull(X)")

Example:

| process eval("is_loss=Selling_price<cost_price")
| process eval("notnull_result=isnotnull(is_loss)")
| chart count() by Selling_price, cost_price, is_loss, notnull_result

11.3. isnotnull 49



Evaluation Process Plugin Documentation, Release latest

Fig. 3: Using isnotnull function

Here, the query first evaluates if the Selling_price is less than cost_price and returns its
value in the is_loss identifier. Then, it returns true in the notnull_result identifier if the
value in the is_loss field is not null. If the value is null, the function returns false.

The chart count() command displays the count of the combination of Selling_price,
cost_price, is_loss and notnull_result values as a chart and in a tabular form.

11.4 isnull

Accepts one argument X and returns true if the value of X is null. If the value is not null,
the function returns false.

Syntax:

| process eval("identifier=isnull(X)")

Example:

| process eval("is_loss=Selling_price<cost_price")
| process eval("null_result=isnull(is_loss)")
| chart count() by Selling_price, cost_price, is_loss, null_result

11.4. isnull 50



Evaluation Process Plugin Documentation, Release latest

Fig. 4: Using isnull function

Here, the query first evaluates if the Selling_price is less than cost_price and returns
its value in the is_loss identifier. Then, it returns true in the null_result identifier if the
value in the is_loss field is null. If the value is not null, the function returns false.

The chart count() command displays the count of the combination of Selling_price,
cost_price, is_loss and null_result values as a chart and in a tabular form.

11.5 isnum

Accepts one argument X and returns true if the value of X is a number. If the value is
not a number, the function returns false.

Syntax:

| process eval("identifier=isnum(X)")

Example:

11.5. isnum 51



Evaluation Process Plugin Documentation, Release latest

| process eval("num_result=isnum(cost_price)") | chart count() by cost_price, num_result

Fig. 5: Using isnum function

Here, the query returns true in the num_result identifier if the value in the score field is
a number. If the value is not a number, the function returns false.

The chart count() command displays the count of the combination of cost_price and
num_result values as a chart and in a tabular form.

11.6 isstr

Accepts one argument X and returns true if the value of X is a string. If the value is not
a string, the function returns false.

Syntax:

| process eval("identifier=isstr(X)")

Example:

| process eval("str_result=isstr(cost_price)") | chart count() by cost_price, str_result

11.6. isstr 52



Evaluation Process Plugin Documentation, Release latest

Fig. 6: Using isstr function

Here, the query returns true in the str_result identifier if the value in the cost_price
field is a string. If the value is not a string, the function returns false.

The chart count() command displays the count of the combination of cost_price and
str_result values as a chart and in a tabular form.

11.7 typeof

Accepts one argument X and returns the field type of the value of X, such as integer,
double, string and boolean.

Syntax:

| process eval("identifier=typeof(X)")

Example:

| process eval("event_type=typeof(event_id)") | fields event_id, event_type

Fig. 7: Using typeof function

11.7. typeof 53



Evaluation Process Plugin Documentation, Release latest

Here, the query returns the field type of the event_id value in the event_type identifier.

The fields command displays the value of event_id and event_type in a tabular form.

11.8 issubstr

Accepts two arguments X and Y as input and returns true if X is a substring of Y. If X is
not a substring, the function returns false.

Syntax:

| process eval("identifier=issubstr(X, Y)")

Example:

| process eval("exists=issubstr('mal.exe','hi.exmal.exe,ok.dm') ")

Fig. 8: Using issubstr function

Here, the query returns true in the exists identifier if mal.exe is substring of
hi.exmal.exe,ok.dm. If mal.exe is not a substring, the function returns false.

11.8. issubstr 54



CHAPTER

TWELVE

LOGICAL EXPRESSIONS

Compares two boolean values and returns either True or False.

Generic syntax:

| process eval("identifier = first_operand logical_operator second_operand")

12.1 AND (&&)

Compares two boolean values. It returns true if both the values are true. If it isn’t, it
returns false.

Example:

| process eval("is_profit=Selling_price>cost_price") | process eval("is_more_discount=discount>
↪→=51")
| process eval("is_more_profit=is_profit && is_more_discount")
| chart count() by is_profit, is_more_discount, is_more_profit

55



Evaluation Process Plugin Documentation, Release latest

Fig. 1: Using AND function

Here, the query first returns either true or false in the is_profit identifier by comparing
whether the value of the Selling_price field is greater than the value of the cost_price
field. It then returns true or false in the is_more_discount identifier by comparing if the
value of the discount field is greater than or equal to 51. Then it compares the values
of is_profit and is_more_discount fields. It returns true in the is_more_profit identifier
if both the values are true. If it isn’t, it returns false.

The chart count() command displays the count of the combination of is_profit,
is_more_discount, and is_more_profit values as a chart and in a tabular form.

12.2 OR (||)

Compares two boolean values. It returns true if either value is true. If none of the values
are true, it returns false.

Example:

| process eval("is_loss=Selling_price<cost_price")
| process eval("is_profit=Selling_price>cost_price")
| process eval ("is_profitorloss = is_loss || is_profit ")
| chart count() by Selling_price, cost_price, is_loss, is_profit, is_profitorloss

12.2. OR (||) 56



Evaluation Process Plugin Documentation, Release latest

Fig. 2: Using OR function

Here, the query first returns true or false in the is_loss identifier by comparing if
the value of the Selling_price field is less than the value of the cost_price field. It
then returns true or false in the is_profit identifier by comparing if the value of the
Selling_price field is greater than the value of the cost_price field. Then, it compares
the values of is_loss and is_profit fields. It returns true in the is_profitorloss identifier
if either value is true. If it isn’t, it returns false.

The chart count() command displays the count of the combination of Selling_price,
cost_price, is_loss, is_profit and is_profitorloss values as a chart and in a tabular form.

12.2. OR (||) 57



CHAPTER

THIRTEEN

MATHEMATICAL FUNCTIONS

Evaluates mathematical data.

13.1 abs

Accepts a numerical value X as input and returns the absolute value of the number as
the output.

Syntax:

| process eval("identifier=abs(X)")

Example:

| process eval ("Profit= Selling_price - cost_price")
| process eval ("abs_value=abs(Profit)")
| fields Selling_price, cost_price, Profit, abs_value

Fig. 1: Using abs function

Here, the query first calculates the Profit field value. It then computes the absolute
value of the Profit and returns its value in the abs_value identifier.

The fields command displays the value of Selling_price, cost_price, Profit and
abs_value in a tabular form.

58



Evaluation Process Plugin Documentation, Release latest

13.2 floor

Accepts a numerical value X and returns the greatest integer less than or equal to X.

Syntax:

| process eval("identifier=floor(X)")

Example:

| process eval("price_per_unit=Selling_price/unit_sold")
| process eval("final_price = floor(price_per_unit)")
| fields Selling_price, unit_sold, price_per_unit, final_price

Fig. 2: Floor function

Here, the query first calculates the price_per_unit field value. It then computes the
greatest integer less than or equal to the value of Profit and returns its value in the
final_price identifier.

The fields command displays the value of Selling_price, cost_price, Profit and
abs_value in a tabular form.

13.3 ceiling

Accepts a numerical value X and rounds the number up to the smallest following integer
value.

Syntax:

| process eval("identifier=ceiling(X)")

Example:

| process eval("ceiling_duration=ceiling(duration)")

13.2. floor 59



Evaluation Process Plugin Documentation, Release latest

Fig. 3: Using ceiling function

Here, the query accepts the duration field value and returns the smallest following
integer value in the ceiling_duration identifier.

13.4 exp

Accepts a numerical value X and evaluates the exponentiation with e base and X as the
exponent, (e^X). You can also use expe instead of exp.

Syntax:

| process eval("identifier=exp(X)")
or
| process eval("identifier=expe(X)")

Example:

| process eval("result=exp(discount)") | fields discount, result
or
| process eval("result=expe(unit_sold)") | fields unit_sold, result

Fig. 4: Using exp function

13.4. exp 60



Evaluation Process Plugin Documentation, Release latest

Fig. 5: Using exp function

Here, the query evaluates the exponentiation to the e base of the discount field and
returns it in the result identifier.

The fields command displays the value of discount and result in a tabular form.

13.5 exp2

Accepts a numerical value X and evaluates the exponentiation with 2 base and X as the
exponent, (2^X).

Syntax:

| process eval("identifier=exp2(X)")

Example:

| process eval("result=exp2(unit_sold)") | fields unit_sold, result

Fig. 6: Using exp2 function

Here, the query evaluates the exponentiation to the 2 base of the unit_sold field and
returns it in the result identifier.

The fields command displays the value of unit_sold and result in a tabular form.

13.5. exp2 61



Evaluation Process Plugin Documentation, Release latest

13.6 exp10

Accepts a numerical value X and evaluates the exponentiation with 10 base and X as
the exponent, (10^X).

Syntax:

| process eval("identifier=exp10(X)")

Example:

| process eval("result=exp10(unit_sold)") | fields unit_sold, result

Fig. 7: Using exp10 function

Here, the query evaluates the exponentiation to the 10 base of the unit_sold field and
returns it in the result identifier.

The fields command displays the value of unit_sold and result in a tabular form.

13.7 log

Accepts a numerical value X and evaluates the logarithm of X with base e, (log_e(X)).
You can also use the function loge instead of the function log.

Syntax:

| process eval("identifier=log(X)")
or
| process eval("identifier=loge(X)")

Example:

| process eval("result=log(unit_sold)") | fields unit_sold, result
or
| process eval("result=loge(unit_sold)") | fields unit_sold, result

13.6. exp10 62



Evaluation Process Plugin Documentation, Release latest

Fig. 8: Using log function

Fig. 9: Using log function

Here, the query evaluates the logarithm to the e base of the unit_sold field and returns
it in the result identifier.

The fields command displays the value of unit_sold and result in a tabular form.

13.8 log2

Accepts a numerical value X and evaluates the logarithm of X with base 2, (log_2(X)).

Syntax:

| process eval("identifier=log2(X)")

Example:

| process eval("result=log2(unit_sold)") | fields unit_sold, result

Fig. 10: Using log2 function

13.8. log2 63



Evaluation Process Plugin Documentation, Release latest

Here, the query evaluates the logarithm to the 2 base of the unit_sold field and returns
it in the result identifier.

The fields command displays the value of unit_sold and result in a tabular form.

13.9 log10

Accepts a numerical value X and evaluates the logarithm of X with base 10,
(log_{mathrm{10}} (X)).

Syntax:

| process eval("identifier=log10(X)")

Example:

| process eval("result=log10(unit_sold)") | fields unit_sold, result

Fig. 11: Using log10 function

Here, the query evaluates the logarithm to the 10 base of the unit_sold field and returns
it in the result identifier.

The fields command displays the value of unit_sold and result in a tabular form.

13.10 pi

Returns the first 12 digits of the value of pi. Unlike other functions, this function does
not take any argument.

Syntax:

| process eval("identifier=pi()")

Example:

13.9. log10 64



Evaluation Process Plugin Documentation, Release latest

| process eval ("area_circle=pi() * (radius^2)")
| chart count () by radius, area_circle

Fig. 12: Using pi function

Here, the query calculates the area of the circle where pi() gives the value of the
mathematical constant (π). The query returns area in the area_circle identifier.

The chart count() command displays the count of the combination of radius and
area_circle values as a chart and in a tabular form.

13.11 sqrt

Accepts a numeric X value and returns the square root of the numeric value.

Syntax:

| process eval("identifier=sqrt(X)")

Example:

| process eval("result=sqrt(unit_sold)") | fields unit_sold, result

13.11. sqrt 65



Evaluation Process Plugin Documentation, Release latest

Fig. 13: Using sqrt function

Here, the query returns the square root of the unit_sold field value in the unit_sold
identifier.

The fields command displays the value of unit_sold and result in a tabular form.

13.12 random

Returns a random number ranging between 0 and 1. It does not take any argument.
You can use this function in case you want a random number for any eval expression.

Syntax:

| process eval("identifier=random()")

Example:

| process eval("x=random()")

Fig. 14: Using random function

Here, the query returns a random number between 0 and 1 in the x identifier.

13.12. random 66



Evaluation Process Plugin Documentation, Release latest

13.13 exact

Accepts a numeric calculation X and returns a result with a significant amount of
precision.

Syntax:

| process eval("identifier=exact(X)")

Example:

| process eval("result=exact(3.4*unit_sold)") | fields unit_sold, result

Fig. 15: Using exact function

Here, the query returns the precise value of the arithmetic expression 3.4*unit_sold in
the result identifier.

The fields command displays the value of unit_sold and result in a tabular form.

13.14 round

Accepts up to two numeric arguments: X and Y, and rounds the value specified in X by
the amount of decimal specified in Y. Here Y is optional, and in case Y is not defined, it
rounds the value of X to the nearest integer by default.

Syntax:

| process eval("identifier=round(X,Y)")

Example 1:

| process eval("x=round(12.233)")

Result: x=12

Example 2:

13.13. exact 67



Evaluation Process Plugin Documentation, Release latest

| process eval("result=round(12.234,2)")

Fig. 16: Using round function

Here, the query rounds up 12.234 to the hundredths (second decimal place) and returns
its value in the result identifier.

13.15 sigfig

Accepts one numeric field X and rounds that number to the appropriate number of
significant figures. It ignores the decimal numbers if provided and takes only the
numbers before the decimal point. It does not round the number that is in the 10th
and 100th place.

Syntax:

| process eval("identifier=sigfig(X)")

If X is of 1000th place, the function rounds it to the nearest 10.

Example 1:

| process eval("result=sigfig(1111)")

Fig. 17: Using sigfig function

Here, the query rounds up 1111 to the nearest 10 and returns its value in the result
identifier.

13.15. sigfig 68



Evaluation Process Plugin Documentation, Release latest

If X is of 10000th place, the function rounds it to the nearest 100.

Example 2:

| process eval("x=sigfig(11111)")

Here, the query rounds up 11111 to the nearest 100 and returns its value in the result
identifier.

13.15. sigfig 69



CHAPTER

FOURTEEN

MULTIVALUE FUNCTIONS

Evaluates multivalue arguments and returns multivalue fields.

14.1 split

Accepts two arguments: X and Y. It splits the X field values by the delimiter, such as
comma, semicolon and blank space specified in the Y field and returns a multivalue field
containing a list of split values.

Syntax:

| process eval("identifier=split(X,Y)")

Example:

| process eval("split_message=split(message, ' ')")
| fields message, split_message

Fig. 1: Using split function

Here, the query splits themessage field’s value when the split function detects a space
in the value and returns split values in the split_message identifier.

The fields command displays the value of fields and split_message in a tabular form.

When using special characters such as backslash ’\’ as a delimiter, they should be
escaped.

70



Evaluation Process Plugin Documentation, Release latest

Example:

| process eval("split_message=split(fieldname,'\\')")
| fields message, split_message

14.2 commands

Accepts a search string X or a field that contains a search string, and returns a multivalue
field containing a list of the commands used in X.

Syntax:

| process eval("identifier=commands(X)")

Example:

| process eval("commands_list=commands('chart count() | fields name | rename message as alert
↪→')")
| fields commands_list

Fig. 2: Using commands function

Here, the query first returns the list of commands in the chart count() | fields name |
rename message as alert search string. Then, the query using the commands returns
them in the commands_list identifier.

The fields command displays the value of commans_list in a tabular form.

14.3 mvappend

Accepts two or more arguments and appends the values of the arguments. It returns
a multivalue result containing a list of all the appended values. The arguments can be
strings, multivalue fields or single value fields.

Syntax:

14.2. commands 71



Evaluation Process Plugin Documentation, Release latest

| process eval("identifier=mvappend(X, ...)")

Example:

| process eval("ip_address=mvappend(source_address, destination_address)")
| fields source_address, destination_address, ip_address

Fig. 3: Using mvappend function

Here, the query returns the appended value of the source_addess and
destination_address fields in the ip_address identifier.

The fields command displays the value of source_address, destination_address and
ip_address in a tabular form.

14.4 mvcount

Accepts either a multivalue field or a single value field X and returns the count of that
field’s values.

Syntax:

| process eval("identifier=mvcount(X)")

Example:

| process eval("message_character_count=mvcount(split(message, ' '))")
| fields message, message_character_count

14.4. mvcount 72



Evaluation Process Plugin Documentation, Release latest

Fig. 4: Using mvcount function

Here, the query compares the values obtained from split(message, ‘ ‘). If the values
obtained from the split(message, ‘ ‘) and pattern match, it returns the matched value
in the filter_account_message identifier. If they don’t match, it returns 0.

The fields command displays the value of message and message_character_count in a
tabular form.

14.5 mvdedup

It removes duplicate values of a multivalue field X and returns a multivalue output in a
list.

Syntax:

| process eval("identifier=mvdedup(X)")

Example:

| process eval("discount_ml=if(discount < 50) {return 'less discount less'}
else {return 'more discount more'}")
| process eval("result=mvdedup(split(discount_ml, ' '))")
| fields discount, discount_ml, result

Fig. 5: Using mvdedup function

Here, the query first returns less discount less in the discount_ml identifier if discount

14.5. mvdedup 73



Evaluation Process Plugin Documentation, Release latest

is less than 50, if it is more it returns more discount more. The split function splits the
value of discount_ml when it encounters a space. Then, the mvdeup function removes
the duplicate values in the value obtained from the split(discount_ml, ‘ ‘) and returns it
in the result identifier.

The fields command displays the value of discount, discount_ml and result in a tabular
form.

14.6 mvfilter

Accepts a multivalue X field and a pattern as input. It filters the field values using the
pattern and returns a multivalue or a single value field containing the list of values that
match the given pattern.

Syntax:

| process eval("identifier=mvfilter(X, pattern)")

Example:

| process eval("filter_account_message=mvfilter(split(message, ' '), 'acco.*')")
| fields message, filter_account_message

Fig. 6: Using mvfilter function

Here, the query compares the values obtained from split(message, ‘ ‘) to the pattern
acco.. Any sequence of letters can follow the string acco. If the values obtained
from split(message, ‘ ‘) and pattern matches, it returns the matched value in the
filter_account_message identifier, if it doesn’t match it returns 0. To learn more about
the split(message, ‘ ‘) value, go to split.

The fields command displays the value of fields message and filter_account_message
in a tabular form.

14.6. mvfilter 74



Evaluation Process Plugin Documentation, Release latest

14.7 mvfind

Accepts two arguments: a multivalue X field and a regex (regular expression) pattern
Y. It tries to match the regular expression against any substring of X value. If there
is a match, the function returns the index (beginning from zero) of the first value that
matches the regex pattern. If there isn’t a match, it returns null.

Syntax:

| process eval("identifier=mvfind(X, Y)")

Example:

| process eval("indexof_account=mvfind(split(message, ' '), 'acco.*')")
| fields message, indexof_account

Here, the query searches for the first match in the values obtained from split(message, ‘
‘) to the pattern acco. Any sequence of letters can follow the acco string. If the function
finds a match in the values obtained from split(message, ‘ ‘) to the pattern, it returns
the index (position) of the first match (index starts from zero) in the indexof_account
identifier.

The fields command displays the value of fields message and **indexof_account* in a
tabular form.

Fig. 7: Using mvfind function

14.8 mvindex

Accepts up to three arguments: a multivalue field X, a number start_index and a number
end_index. It evaluates the values of X and returns the value that starts at the index
specified by start_index and ends at the index specified by end_index.

• The X field and the start_index are required. The end_index is inclusive and
optional while providing positive values for both the start and end index.

• If the end_index is not specified, the function returns only the value at start_index.

14.7. mvfind 75



Evaluation Process Plugin Documentation, Release latest

• The start_index and end_index can be negative. Both the start_index and
end_index is required while providing negative values for either the start_index
or end_index.

• If the indices are out of range or invalid, the result is null.

Syntax:

| process eval("identifier=mvindex(X, start_index, end_index)")

Example:

| process eval("index_message=mvindex(split(message, ' '), 2)")
| fields message, index_message

Here, the query returns the third value, where the index starts at 0, from those obtained
values from split(message, ‘ ‘) in the index_message identifier.

The fields command displays the value of fields message and index_message in a
tabular form.

Fig. 8: Using mvindex function

14.9 mvjoin

Accepts two arguments: a multivalue X field and a string delimiter (such as comma,
semicolon and blank space) Y. The function concatenates the individual values within X
using the value of Y as a separator.

Syntax:

| process eval("identifier=mvjoin(X, Y)")

Example:

14.9. mvjoin 76



Evaluation Process Plugin Documentation, Release latest

| process eval("result=mvjoin(split(message, ' '), ',')")
| fields message, result

Here, the query accepts the values from split(message, ‘ ‘) and combines them with a
comma. It returns the joined values in the result identifier. Go to split to know on the
value from split(message, ‘ ‘).

The fields command displays the value of the message and result in a tabular form.

Fig. 9: Using mvjoin function

14.10 mvrange

It takes up to three arguments: a starting numberX, an ending number Y and an optional
step increment Z. It returns the range of X and Y, where Y is excluded from the result.

• If Z is not provided, the default increment step is +1.

• If Z is a timespan like 1d (1 day), then X and Y are treated as UNIX time.

Syntax:

| process eval("identifier=mvrange(X, Y, Z)")

Example 1:

| process eval("range=mvrange(1,5)")

14.10. mvrange 77



Evaluation Process Plugin Documentation, Release latest

Fig. 10: Using mvrange function

Here, the query returns the value from 1 to 5 (excluding 5) with +1 increment in the
range identifier. The result is 1, 2, 3, 4.

Example 2:

| process eval("range=mvrange(1.1,5)")

Here, the query returns the value from 1.1 to 5 with +1 increment in the mvrange
identifier. The result is 1.1, 2.1, 3.1, 4.1.

Example 3:

| process eval("range=mvrange(1.5,6,1.5)")

Here, the query returns the value from 1.5 to 6 (excluding 6) with +1.5 increment in the
mvrange identifier. The result is 1.5, 3, 4.5.

Example 4:

| process eval("range=mvrange(1134,343434,'1d')")

Here, the query returns the value from 1134 to 343434 with +86400 increment in the
mvrange identifier. The result is 1134, 87534, 173934, 260334.

Here, 1d = 86400 seconds

Example 5:

| process eval("range=mvrange(1233.124224,2434455.1232323,'1w')")

Here, the query returns the value from 1233.124224 to 2434455.1232323 with +604800
increment in the mvrange identifier. The result is 1233.124224, 606033.124224,
1210833.1242240001, 1815633.1242240001, 2420433.124224.

Here, 1w = 604800 seconds

14.11 mvsort

Accepts a multivalue X field and returns a multivalue field containing the list of values
of X sorted in lexicographical or alphabetical order.

14.11. mvsort 78



Evaluation Process Plugin Documentation, Release latest

• In lexicographical order, numbers are ordered by digits and come before letters.
If the first digits match, the second digits get compared. The comparison is like a
string. For example, 10 comes before 2, but 111 comes after 10 (and after 1000)
because 0 is less than 1. A lexical sort compares the characters in each string as
characters, not integral values.

• All uppercase letters comes before lowercase.

Syntax:

| process eval("identifier=mvsort(X)")

Example 1:

| process eval("sort=mvsort(split(message, ' '))") | fields message, sort

Fig. 11: Using mvsort function

Here, the query accepts the values from split(message, ‘ ‘) and sorts them according
to lexicographical rules. It returns the sorted value in the sort=mvsort identifier.

The fields command displays the value of the message and sort in a tabular form.

Example 2:

If testData = {“test1”, 1, 1.2}

| process eval("sort=mvsort(testData)")

Here, the query sorts the data in the testData field according to lexicographical rules.
It returns the sorted value in the sort identifier. The result is [1, 1.2, “test1”].

14.12 mvzip

Accepts up to three arguments: two multivalue X and Y fields and an optional delimiter
Z. It combines the first values of X and Y, the second values of X and Y, and so on. Z
separates the values of X and Y. The comma is a default delimiter.

14.12. mvzip 79



Evaluation Process Plugin Documentation, Release latest

Syntax:

| process eval("identifier=mvzip(X,Y,Z)")

Example 1:

If users = [“john”, “jack”, “kim”], machines = [“lp1”, “lp2”, “lp3”]

| process eval("x=mvzip(users,machines)")

Here, the query accepts the users and machines field values. It combines the first,
second, and third values of the user field, respectively, with that of themachines field. A
comma separates the combined values. It returns the combined value in theX identifier.

Result: [“john,lp1”, “jack,lp2”, “kim,lp3”]

14.12. mvzip 80



CHAPTER

FIFTEEN

RELATIONAL EXPRESSIONS

Returns a boolean value, True or False, based on whether the relation specified by the
relational operator is satisfied or not.

Generic syntax:

| process eval("identifier = first_operand relational_operator second_operand")

15.1 Less than (<)

Compares two operands. It returns true if the first operand is less than the second
operand, or false if the first operand is greater than the second.

Example:

| process eval("is_loss=Selling_price<cost_price")
| chart count() by Selling_price, cost_price, is_loss

Fig. 1: Using Less than function

81



Evaluation Process Plugin Documentation, Release latest

Here, the query compares the cost_price and Selling_price field values. It returns true
in the is_loss identifier if the cost_price is less than the Selling_price, if it isn’t it returns
false.

The chart count() displays the count of the combination of cost_price and Selling_price
values as a chart and in a tabular form.

15.2 Greater than (>)

Compares two operands. It returns true if the first operand is greater than the second
operand or returns false if the first operand is less than the second.

Example:

| process eval("is_profit=Selling_price>cost_price")
| chart count() by Selling_price, cost_price, is_profit

Fig. 2: Using Greater than function

Here, the query compares the Selling_price and cost_price fields value. It returns true
in the is_profit identifier if the Selling_price is greater than the cost_price, if it isn’t it
returns false.

The chart count() displays the count of the combination of Selling_price, cost_price,
and is_profit values as a chart and in a tabular form.

15.2. Greater than (>) 82



Evaluation Process Plugin Documentation, Release latest

15.3 Less than or equal to (<=)

Compares two operands. It returns True if the first operand is less than or equal to the
second operand, if it isn’t it returns False.

Example:

| process eval("is_less_discount=discount<=50")
| chart count() by discount, is_less_discount

Fig. 3: Using Less than or equals function

Here, the query compares the discount field value with 50. It returns true in the
is_less_discount identifier if the discount is less than or equal to 50, if it isn’t it returns
false.

The chart count() displays the count of the combination of discount and is_less_discount
values as a chart and in a tabular form.

15.4 Greater than or equal to (>=)

Compares two operands. It returns true if the first operand is greater than or equal to
the second operand, if it isn’t it returns false.

Example:

| process eval("is_more_discount=discount>=51")
| chart count() by discount, is_more_discount

15.3. Less than or equal to (<=) 83



Evaluation Process Plugin Documentation, Release latest

Fig. 4: Using Greater than or equals function

Here, the query compares the discount field value with 51. It returns true in the
is_more_discount identifier if the discount is greater than or equal to 51, if it isn’t it
returns false.

The chart count() displays the count of the combination of discount and
is_more_discount values as a chart and in a tabular form.

15.5 Not equal to (!=)

Compares two operands. It returns true if the first operand is not equal to the second
operand, if it isn’t it returns false.

Example:

| process eval("is_profit_or_loss=Selling_price!=cost_price")
| chart count() by Selling_price, cost_price, is_profit_or_loss

15.5. Not equal to (!=) 84



Evaluation Process Plugin Documentation, Release latest

Fig. 5: Using Not equals function

Here, the query compares the Selling_price field value with the cost_price field. It
returns true in the is_profit_or_loss identifier if the Selling_price is not equal to the
cost_price, if it is it returns false.

The chart count() displays the count of the combination of Selling_price, cost_price and
is_profit_or_loss values as a chart and in a tabular form.

15.6 Equal to (==)

Compares two operands. It returns true if the first operand is equal to the second
operand, if it isn’t it returns false.

Example:

| process eval("no_profit_or_loss=Selling_price==cost_price")
| chart count() by Selling_price, cost_price, no_profit_or_loss

15.6. Equal to (==) 85



Evaluation Process Plugin Documentation, Release latest

Fig. 6: Using Equal to function

Here, the query compares the Selling_price field value with the cost_price field. It
returns true in the no_profit_or_loss identifier if the Selling_price is equal to the
cost_price, if it isn’t it returns false.

The chart count()* displays the count of the combination of **Selling_price,
cost_price, and no_profit_or_loss values as a chart and in a tabular form.

15.6. Equal to (==) 86



CHAPTER

SIXTEEN

STATISTICAL FUNCTIONS

Evaluates the maximum and minimum value of numeric or string argument.

16.1 max

Accepts an arbitrary number of arguments as input and returns the maximum of
any numeric or string argument. The values of arguments get converted into ASCII
(American Standard Code for Information Interchange), so a string is greater than a
number.

Syntax:

| process eval("identifier=max(X, ...)")

Example:

| process eval("Maximum_datasize=max(received_datasize,sent_datasize)")
| fields received_datasize, sent_datasize, Maximum_datasize

Fig. 1: Using max function

Here, the query returns the highest value of the received_datasize and sent_datsize
fields in theMaximum_datasize identifier.

87



Evaluation Process Plugin Documentation, Release latest

The fields command displays the value of received_datasize, sent_datasize and
Maximun_datasize in a tabular form.

16.2 min

Accepts an arbitrary number of arguments as input and returns the minimum of any
numeric or string argument. The values of arguments get converted into ASCII, so a
string is greater than a number.

Syntax:

| process eval("identifier=min(X, ...)")

Example:

| process eval("Minimum_datasize=min(received_datasize,sent_datasize)")
| fields received_datasize, sent_datasize, Minimum_datasize

Fig. 2: Using min function

Here, the query returns the lowest value of the received_datasize and sent_datsize
fields in theMinimum_datasize identifier.

The fields command displays the value of received_datasize, sent_datasize and
Minimum_datasize in a tabular form.

16.2. min 88



CHAPTER

SEVENTEEN

STRING FUNCTIONS

Evaluates string values and fields.

17.1 len

Accepts a string value X as input. It evaluates the string’s character length and returns
the count of a character’s number in the string.

Syntax:

| process eval("identifier=len(X)")

Example:

| process eval("message_length=len(message)")
| fields message, message_length

Fig. 1: Using len function

Here, the query counts the message field’s character length and returns the result in
the message_length identifier.

The fields command displays the value of themessage andmessage_length in a tabular
form.

89



Evaluation Process Plugin Documentation, Release latest

17.2 issubstr

Accepts two arguments: a string value X and a source string Y. It returns true if X is a
substring of Y. The substring can be at any position of the source string.

Syntax:

| process eval("identifier=issubstr(X,Y)")

Example 1:

| process eval("result=issubstr('WSS','AWSService') ")

Fig. 2: Using issubstr function

Here, the query returns true value in result field asWSS is sub string of AWSService.

Example 2:

| process eval("exists=issubstr('mal.exe','hi.exmal.exe,ok.dm') ")

Fig. 3: Using issubstr function

Here, the query returns true value in exists field as mal.exe is sub string of
hi.exmal.exe,ok.dm.

17.2. issubstr 90



Evaluation Process Plugin Documentation, Release latest

17.3 substr

Accepts up to three arguments, a string value X, a start index and an end index. It
evaluates the substring of X and returns the substring that starts at the index specified
by start_index and ends at the index specified by end_index. Here the end_index is
exclusive.

Syntax:

| process eval("identifier=substr(X, start_index, end_index)")

Example:

| process eval("substring=substr(col_type, 0, 4)")

Fig. 4: Using substr function

Here, the query checks the col_type event’s substring starting at 0 index and ending at
4 index and returns the result in substring identifier.

17.4 lower

Accepts only one string argument X as input. It converts the string to lowercase and
returns the converted string value.

Syntax:

| process eval("identifier=lower(X)")

Example:

| process eval("username=lower(user)") | fields user, username

17.3. substr 91



Evaluation Process Plugin Documentation, Release latest

Fig. 5: Using lower function

Here, the query converts the user field value to lowercase and returns the result in the
username identifier.

The fields command displays the value of user and username in a tabular form.

17.5 upper

Accepts only one string argument X as input and converts the string to uppercase and
returns the converted string value.

Syntax:

| process eval("identifier=upper(string_value)")

Example:

| process eval("username=upper(user)") | fields user, username

Fig. 6: Using upper function

Here, the query converts the user field value to uppercase and returns the result in the
username identifier.

The fields command displays the value of user and username in a tabular form.

17.5. upper 92



Evaluation Process Plugin Documentation, Release latest

17.6 trim

Accepts only one string argument X. It trims the spaces to the left and right in the string
and returns a trimmed value. Trailing spaces are the white spaces located at the end of
a line, without any other characters following it, for example blank spaces and tabs.

Syntax:

| process eval("identifier=trim(X)")

Example:

| process eval("username=trim(' Bob ')")

Fig. 7: Using trim function

Here, the query removes the spaces to the left and right from Bob and returns the
trimmed value in the username identifier.

17.7 ltrim

Accepts up to two string arguments X and Y as input. It trims the string Y from the left
side of the field X and returns a trimmed value. If Y is not defined, it trims the spaces
from the left side.

Syntax:

| process eval("identifier=ltrim(X, Y)")

Example:

| process eval("result=ltrim(device_name, 'local')")

17.6. trim 93



Evaluation Process Plugin Documentation, Release latest

Fig. 8: Using ltrim function

Here, the query removes the string local from the left side in the value of the
device_name field and returns the trimmed value in the result identifier.

17.8 rtrim

It takes up to two string arguments: X and Y. It trims Y from the right side of the X field
and returns a trimmed value. If Y is not defined, it trims the trailing spaces from the
right side.

Syntax:

| process eval("identifier=rtrim(X, Y)")

Example:

| process eval("result=rtrim(device_name, 'host')")

Fig. 9: Using rtrim function

Here, the query removes the host string from the right side of the device_name field
value and returns the trimmed value in the result identifier.

17.9 replace

Accepts three arguments as input: a string X, a regex string Y and a string Z. It
substitutes the string Z in the string X for every occurrence of the regex string Y and

17.8. rtrim 94



Evaluation Process Plugin Documentation, Release latest

returns a string value.

Syntax:

| process eval("identifier=replace(X, Y, Z)")

Example:

| process eval("result=replace('123', '[0-9]', 'X')")

Fig. 10: Using replace function

Here, the query substitutesX in the 123 string for the every occurence of the [0-9] regex
string and returns the replaced value in the result identifier.

17.10 spath

Accepts two arguments: X and Y. It returns a value extracted from the structured data
type in X, based on the location path in Y.

Syntax:

| process eval("identifier=spath(X, Y)")

X: The structured data type in XML or JSON format.

Y: The XML or JSON formatted location path.

Example 1:

| process eval("usern=spath('<name>john</name>', 'name')")

17.10. spath 95



Evaluation Process Plugin Documentation, Release latest

Fig. 11: Using spath function

Here, the query extracts the value from the name location and returns it in the usern
identifer.

Example 2:

| process eval("usern=spath('{name:\john\}', 'name')")

Fig. 12: Using spath function

Here, the query extracts the value from the name: location and returns it in the usern
identifer.

Note: For JSON format data,

• Keys must be without quotes. LogPoint currently does not support nested quotes.

• If the value of any key is a string, replace quote with backslash as shown in Example
2 above.

• For example, the JSON data is in a key-value pair. Where, keys and values must be
within double quotes {“name”:”John”}. However, while using the spath function,
the JSON data is written as {name:\john\}.

17.10. spath 96



Evaluation Process Plugin Documentation, Release latest

17.11 urldecode

Accepts an escapedURL characterX, for example http://www.logpoint.com/download?r=header
and returns the decoded or unescaped URL string.

Syntax:

| process eval("identifier=urldecode(X)")

Example:

| process eval("decoded_url=urldecode('http%3A%2F%2Fwww.logpoint.com%2Fdownload%3Fr
↪→%3Dheader')")

Fig. 13: Using urldecode function

Here, the query decodes the escaped url http%3A%2F%2Fwww.logpoint.com%2Fdownload%3Fr%3Dheader
and returns the decoded url in the decoded_url identifier.

17.12 uuid

It generates a random Universal Unique Identifier (UUID) for a log.

Syntax:

| process eval("X=uuid()")

Example 1:

| process eval("id=uuid()")

17.11. urldecode 97



Evaluation Process Plugin Documentation, Release latest

Fig. 14: Using uuid function

Here, the query generates a random uuid for the log and returns the uuid in the id field.

Example 2:

| process eval("random_id=uuid()") |chart count() by uuid

Fig. 15: Using uuid function

Here, the query generates a random uuid for each log and returns the count of uuid in
the random_id field.

17.13 mimedecode

It decodes theMultipurpose InternetMail Extensions (MIME) encoded values. It accepts
an argument: an encoded string, for example, =?utf-8?B?MTIzIFRlc3Rp?= or a field
with a valid MIME encoded string with metadata.

17.13. mimedecode 98



Evaluation Process Plugin Documentation, Release latest

Syntax:

| process eval("X=mimedecode(Y)")

Example 1:

| process eval("result=mimedecode('=?utf-8?B?MTIzIFRlc3Rp?=')")

Fig. 16: Using mimedecode function

Here, the query decodes the encoded string ‘=?utf-8?B?MTIzIFRlc3Rp?=’ and returns
the decoded value in the result field.

Example 2:

| process eval("result=mimedecode('Subject: =?iso-8859-1?Q?=A1Hola,_se=F1or!?=')")

Fig. 17: Using mimedecode function

Here, the query decodes the Subject field and returns the decoded value in the result
field.

Use Case 1:

mimedecode() eval command chaining.

Query

| process eval("result1=mimedecode('=?UTF-8?B?U3ViamVjdDogPT9pc28tODg1OS0xP1E/
↪→PUExSG9sYSxfc2U9RjFvciE/PQ==?=')")
| process eval("result2=mimedecode(result1)")

17.13. mimedecode 99



Evaluation Process Plugin Documentation, Release latest

Encoded String

U3ViamVjdDogPT9pc28tODg1OS0xP1E/PUExSG9sYSxfc2U9RjFvciE/PQ==

Charset/encoding

iso-8859-1 -> UTF-8

Type

Query Printable -> Base64

Result 1

Subject: =?iso-8859-1?Q?=A1Hola,_se=F1or!?=

Result 2

Subject: ¡Hola,_señor!

Use Case 2:

mimedecode() working with other eval commands.

Query

| process eval("result1=mimedecode('=?UTF-8?B?U3ViamVjdDogPT9pc28tODg1OS0xP1E/
↪→PUExSG9sYSxfc2U9RjFvciE/PQ==?=')")
| process eval("result2=mimedecode(result1)")
| process eval("result3=mimedecode(mimedecode('=?UTF-8?B?
↪→U3ViamVjdDogPT9pc28tODg1OS0xP1E/PUExSG9sYSxfc2U9RjFvciE/PQ==?='))")
| process eval("result=result2==result3")
| fields result1, result2, result3, result

Encoded String

U3ViamVjdDogPT9pc28tODg1OS0xP1E/PUExSG9sYSxfc2U9RjFvciE/PQ==

Charset/encoding

iso-8859-1 -> UTF-8

Type

Query Printable -> Base64

Result 1

Subject: =?iso-8859-1?Q?=A1Hola,_se=F1or!?=

17.13. mimedecode 100



Evaluation Process Plugin Documentation, Release latest

Result2

Subject: ¡Hola,_señor!

Result3

Subject: ¡Hola,_señor!

Result

true

17.13. mimedecode 101



CHAPTER

EIGHTEEN

TRIGONOMETRIC FUNCTIONS

Evaluates trigonometric and hyperbolic values.

18.1 sin

Accepts one argument X as input and returns the sine of X.

Syntax:

| process eval("identifier=sin(X)")

Example:

| process eval("sin_value=sin(length)") | fields length, sin_value

Fig. 1: Using sin function

Here, the query returns the sine of the length field in the sin_value identifier.

The fields command displays the value of length and sin_value fields in a tabular form.

18.2 sinh

Accepts one argument X as input and returns the hyperbolic sine of X.

102



Evaluation Process Plugin Documentation, Release latest

Syntax:

| process eval("identifier=sinh(X)")

Example:

| process eval("sinh_value=sinh(length)") | fields length, sinh_value

Fig. 2: Using sinh function

Here, the query returns the hyperbolic sine of the length field in the sinh_value
identifier.

18.3 asin

Accepts one argument X as input and returns the inverse sine of X. The value of X must
be in the range from -1 to 1 inclusive.

Syntax:

| process eval("identifier=asin(X)")

Example:

| process eval("asin_value=asin(1)")

Fig. 3: Using asin function

18.3. asin 103



Evaluation Process Plugin Documentation, Release latest

Here, the query returns the inverse sine of 1 in the asin_value identifier.

18.4 asinh

Accepts one argument X as input and returns the inverse hyperbolic sine of X.

Syntax:

| process eval("identifier=asinh(X)")

Example:

| process eval("asinh_value=asinh(1)")

Fig. 4: Using asinh function

Here, the query returns the inverse hyperbolic sine of 1 in the asinh_value identifier.

18.5 cos

Accepts one argument X as input and returns the cosine of X.

Syntax:

| process eval("identifier=cos(X)")

Example:

| process eval("cos_value=cos(length)") | fields length, cos_value

18.4. asinh 104



Evaluation Process Plugin Documentation, Release latest

Fig. 5: Using cos function

Here, the query returns the cosine of the length field in the cos_value identifier.

The fields command displays the value of length and cos_value fields in a tabular form.

18.6 cosh

Accepts one argument X as input and returns the hyperbolic cosine of X.

Syntax:

| process eval("identifier=cosh(X)")

Example:

| process eval("cosh_value=cosh(length)") | fields length, cosh_value

Fig. 6: Using cosh function

Here, the query returns the hyperbolic cosine of the length field in the cosh_value
identifier.

The fields command displays the value of length and cosh_value fields in a tabular form.

18.6. cosh 105



Evaluation Process Plugin Documentation, Release latest

18.7 acos

Accepts one argument X as input and returns the inverse cosine of X. X must be in the
range from -1 to 1 inclusive.

Syntax:

| process eval("identifier=acos(X)")

Example:

| process eval("acos_value=acos(0)")

Fig. 7: Using acos function

Here, the query returns the inverse cosine of 0 in the acos_value identifier.

18.8 acosh

Accepts one argument X as input and returns the inverse hyperbolic cosine of X.

Syntax:

| process eval("identifier=acosh(X)")

Example:

| process eval("acosh_value=acosh(1)")

18.7. acos 106



Evaluation Process Plugin Documentation, Release latest

Fig. 8: Using acosh function

Here, the query returns the inverse hyperbolic cosine of 1 in the acosh_value identifier.

18.9 tan

Accepts one argument X as input and returns the tangent of X.

Syntax:

| process eval("identifier=tan(X)")

Example:

| process eval("tan_value=tan(length)")
| fields length, tan_value

Fig. 9: Using tan function

Here, the query returns the tangent of the length field in the vtan_value identifier.

The fields command displays the value of length and tan_value fields in a tabular form.

18.10 tanh

Accepts one argument X as input and returns the hyperbolic tangent of X.

18.9. tan 107



Evaluation Process Plugin Documentation, Release latest

Syntax:

| process eval("identifier=tanh(X)")

Example:

| process eval("tanh_value=tanh(length)")
| fields length, tanh_value

Fig. 10: Using tanh function

Here, the query returns the hyperbolic tangent of the length field in the tanh_value
identifier.

The fields command displays the value of length and tanh_value fields in a tabular form.

18.11 atan

Accepts one argument X as input and returns the inverse tangent of X.

Syntax:

| process eval("identifier=atan(X)")

Example:

| process eval("atan_value=atan(1)")

18.11. atan 108



Evaluation Process Plugin Documentation, Release latest

Fig. 11: Using atan function

Here, the query returns the inverse tangent of 1 in the atan_value identifier.

18.12 atanh

Accepts one argument X as input and returns the inverse hyperbolic tangent of X.

Syntax:

| process eval("identifier=atan(X)")

Example:

| process eval("atanh_value=atanh(1)")

Fig. 12: Using atanh function

Here, the query returns the inverse hyperbolic tangent of 1 in the atanh_value identifier.

18.13 hypot

Accepts two arguments X and Y as input and returns the hypotenuse of a right-angled
triangle with X length and Y base. It follows the equation of the Pythagorean theorem,
(hypotenuse = sqrt{length^2 + base^2}).

Syntax:

18.12. atanh 109



Evaluation Process Plugin Documentation, Release latest

| process eval("identifier=hypot(X,Y)")

Example:

| process eval("hyp=hypot(3,4)")

Fig. 13: Using hypot function

Here, the query calculates the hypotenuse value of the triangle with 3 length and 4 base
and returns its value in the tan_value identifier.

18.13. hypot 110


	Evaluation Process Plugin
	Installing Evaluation Process Plugin
	Uninstalling Evaluation Process Plugin
	Arithmetic expressions
	Bitwise Operations
	Conditional and Comparison functions
	Conversion functions
	Cryptographic functions
	Date/Time functions
	Expression with Parentheses
	Informational functions
	Logical expressions
	Mathematical functions
	Multivalue functions
	Relational expressions
	Statistical functions
	String functions
	Trigonometric functions

