
Integrations Evaluation Process
Plugin
V3.0.0

CONTENTS

1 Evaluation Process Plugin 1

2 Arithmetic expressions 3
2.1 Addition (+) . 3
2.2 Subtraction (-) . 4
2.3 Multiplication (*) . 4
2.4 Division (/) . 5
2.5 Modulus (%) . 5
2.6 Power (^) . 6

3 Relational expressions 7
3.1 Less than (<) . 7
3.2 Greater than (>) . 8
3.3 Less than or equal to (<=) . 9
3.4 Greater than or equal to (>=) . 10
3.5 Not equal to (!=) . 11
3.6 Equal to (==) . 12

4 Logical expressions 14
4.1 AND (&&) . 14
4.2 OR (||) . 15

5 Conditional and Comparison functions 17
5.1 If Statement . 17
5.2 If-else Statement . 18
5.3 If-elseif-else Statement . 18
5.4 Case Statement . 19
5.5 cidrmatch . 20
5.6 coalesce . 21
5.7 false . 22
5.8 in . 22
5.9 match . 23
5.10 like . 24

i

5.11 null . 25
5.12 nullif . 26
5.13 searchmatch . 27
5.14 true . 28

6 Multivalue functions 29
6.1 split . 29
6.2 commands . 30
6.3 mvappend . 30
6.4 mvcount . 31
6.5 mvdedup . 32
6.6 mvfilter . 32
6.7 mvfind . 33
6.8 mvindex . 34
6.9 mvjoin . 35
6.10 mvrange . 36
6.11 mvsort . 37
6.12 mvzip . 38

7 Statistical functions 40
7.1 max . 40
7.2 min . 41

8 Conversion functions 42
8.1 printf . 42
8.2 tonumber . 43
8.3 tostring . 44

9 Expression with Parentheses 46

10 String functions 47
10.1 len . 47
10.2 substr . 48
10.3 lower . 48
10.4 upper . 49
10.5 trim . 50
10.6 ltrim . 50
10.7 rtrim . 51
10.8 replace . 51
10.9 spath . 52
10.10urldecode . 53

11 Cryptographic functions 54
11.1 md5 . 54
11.2 sha1 . 55
11.3 sha256 . 55

ii

11.4 sha512 . 56

12 Mathematical functions 57
12.1 abs . 57
12.2 floor . 58
12.3 ceiling . 58
12.4 exp . 59
12.5 exp2 . 60
12.6 exp10 . 61
12.7 log . 61
12.8 log2 . 62
12.9 log10 . 63
12.10pi . 63
12.11sqrt . 64
12.12random . 65
12.13exact . 66
12.14round . 66
12.15sigfig . 67

13 Trigonometric functions 69
13.1 sin . 69
13.2 sinh . 69
13.3 asin . 70
13.4 asinh . 71
13.5 cos . 71
13.6 cosh . 72
13.7 acos . 72
13.8 acosh . 73
13.9 tan . 74
13.10tanh . 74
13.11atan . 75
13.12atanh . 75
13.13hypot . 76

14 Date/Time functions 77
14.1 now . 77
14.2 relative_time . 77
14.3 strftime . 78
14.4 strptime . 79
14.5 time . 80
14.6 Date/Time patterns . 80

15 Informational functions 82
15.1 isbool . 82
15.2 isint . 83

iii

15.3 isnotnull . 84
15.4 isnull . 85
15.5 isnum . 86
15.6 isstr . 87
15.7 typeof . 88

16 Uninstalling the Application 89
16.1 Uninstalling the Evaluation Process Plugin Application in LogPoint 89

iv

CHAPTER

ONE

EVALUATION PROCESS PLUGIN

The Evaluation Process Plugin enables the use of the eval process command. This
command evaluates mathematical, boolean, and string expressions during a LogPoint
search and places the result of the evaluation in an identifier as a new field.

Syntax:

| process eval("identifier=expression")

• Expression: An expression is a combination of numbers, variables, operators,
functions, brackets and punctuation marks that are grouped to represent a value.

• Identifier: An identifier contains the result of the evaluation of expressions.

Note:

• Make sure the name of the identifier is not the same as an existing field name. If
the same name is used Logpoint discards the value of the identifier.

• While using a string value in an eval expression, always place the string within single
quotes (‘’).

• An eval expression also uses an existing key from an event.

• An invalid expression or syntax mismatch does not generate any exception or error.

Example:

| process eval("Revenue=unit_sold*Selling_price")

The above example calculates the value of Revenue by multiplying the values of
unit_sold and Selling_price.

1

Evaluation Process Plugin Documentation, Release release/3.0.0

Fig. 1: Eval Expression

2

CHAPTER

TWO

ARITHMETIC EXPRESSIONS

An Arithmetic expression is the combination of numbers, operators, and variables that
results in a numeric value.

Generic Syntax:

| process eval("identifier = first_operand arithmetic_operator second_operand")

2.1 Addition (+)

This function accepts numerical values as inputs for addition and generates the output
in the destination field (identifier).

Example:

| process eval("total_datasize=request_datasize+response_datasize")
| fields request_datasize, response_datasize, total_datasize

The above example calculates the value of the total_datasize identifier by adding the
values of the request_datasize and response_datasize fields.

The fields command displays the corresponding values of all the three fields in a tabular
form.

Fig. 1: Addition function

3

Evaluation Process Plugin Documentation, Release release/3.0.0

Note: The Addition function also accepts string values as inputs and returns the
concatenation of values as the output.

2.2 Subtraction (-)

This function accepts numerical values as inputs for subtraction and generates the
output in the destination field (identifier).

Example:

| process eval("difference_in_datasize=request_datasize-response_datasize")
| fields request_datasize, response_datasize, difference_in_datasize

The above example calculates the value of the difference_in_datasize identifier by
subtracting the values of the response_datasize field from the request_datasize field.

The fields command displays the corresponding values of all the three fields in a tabular
form.

Fig. 2: Subtraction function

2.3 Multiplication (*)

This function accepts numerical values as inputs for multiplication and generates the
output in the destination field (identifier).

Example:

| process eval("Revenue=unit_sold*Selling_price")
| fields unit_sold, Selling_price, Revenue

The above example calculates the value of the Revenue identifier by multiplying the
values of the unit_sold and Selling_price fields.

2.2. Subtraction (-) 4

Evaluation Process Plugin Documentation, Release release/3.0.0

The fields command displays the corresponding values of all the three fields in a tabular
form.

Fig. 3: Multiplication function

2.4 Division (/)

This function accepts numerical values as inputs for the division and generates the
output in the destination field (identifier).

Example:

| process eval("price_per_unit=Selling_price/unit_sold")
| fields Selling_price, unit_sold, price_per_unit

The above example calculates the value of the price_per_unit identifier by dividing the
values of the unit_sold and Selling_price fields.

The fields command displays the corresponding values of all the three fields in a tabular
form.

Fig. 4: Division function

2.5 Modulus (%)

This function accepts numerical values as inputs for the division and generates the
remainder of the division as the output in the destination field (identifier).

2.4. Division (/) 5

Evaluation Process Plugin Documentation, Release release/3.0.0

Example:

| process eval("modulo= Selling_price % cost_price ")
| fields Selling_price, cost_price, remainder

The above example calculates the value of the modulo identifier by finding the
remainder after dividing the value of the Selling_price field by cost_price field.

The fields command displays the corresponding values of all the three fields in a tabular
form.

Fig. 5: Modulus function

2.6 Power (^)

This function accepts numerical values as inputs for the power operation and generates
the output in the destination field (identifier).

Example:

| process eval("area_square=length^2")
| fields length, area_square

The above example calculates the value of the area_square identifier by squaring the
value of the length field.

The fields command displays the corresponding values of the two fields in a tabular
form.

Fig. 6: Power function

2.6. Power (^) 6

CHAPTER

THREE

RELATIONAL EXPRESSIONS

The Relational expression is an expression that returns a boolean value, i.e., True or
False, based on whether the relation specified by the relational operator is satisfied or
not.

Generic syntax:

| process eval("identifier = first_operand relational_operator second_operand")

3.1 Less than (<)

This function compares two operands. It returns True if the first operand is less than
the second operand, else returns False.

Example:

| process eval("is_loss=Selling_price<cost_price")
| chart count() by Selling_price, cost_price, is_loss

The above example compares the values of the cost_price and Selling_price fields. It
returns true in the is_loss identifier if the cost_price is less than the Selling_price, else
returns false.

The chart count() command displays the count of the combination of cost_price and
Selling_price values as a chart and in a tabular form.

7

Evaluation Process Plugin Documentation, Release release/3.0.0

Fig. 1: Less than function

3.2 Greater than (>)

This function compares two operands. It returns True if the first operand is greater than
the second operand, else returns False.

Example:

| process eval("is_profit=Selling_price>cost_price")
| chart count() by Selling_price, cost_price, is_profit

The above example compares the values of the Selling_price and cost_price fields. It
returns true in the is_profit identifier if the Selling_price is greater than the cost_price,
else returns false.

The chart count() command displays the count of the combination of Selling_price,
cost_price, and is_profit values as a chart and in a tabular form.

3.2. Greater than (>) 8

Evaluation Process Plugin Documentation, Release release/3.0.0

Fig. 2: Greater than function

3.3 Less than or equal to (<=)

This function compares two operands. It returns True if the first operand is less than or
equal to the second operand, else returns False.

Example:

| process eval("is_less_discount=discount<=50")
| chart count() by discount, is_less_discount

The above example compares the value of the discount field with 50. It returns true
in the is_less_discount identifier if the discount is less than or equal to 50, else returns
false.

The chart count() command displays the count of the combination of discount and
is_less_discount values as a chart and in a tabular form.

3.3. Less than or equal to (<=) 9

Evaluation Process Plugin Documentation, Release release/3.0.0

Fig. 3: Less than or equals function

3.4 Greater than or equal to (>=)

This function compares two operands. It returns True if the first operand is greater than
or equal to the second operand, else returns False.

Example:

| process eval("is_more_discount=discount>=51")
| chart count() by discount, is_more_discount

The above example compares the value of the discount field with 51. It returns true in
the is_more_discount identifier if the discount is greater than or equal to 51, else returns
false.

The chart count() command displays the count of the combination of discount and
is_more_discount values as a chart and in a tabular form.

3.4. Greater than or equal to (>=) 10

Evaluation Process Plugin Documentation, Release release/3.0.0

Fig. 4: Greater than or equals function

3.5 Not equal to (!=)

This function compares two operands. It returns True if the first operand is not equal
to the second operand, else returns False.

Example:

| process eval("is_profit_or_loss=Selling_price!=cost_price")
| chart count() by Selling_price, cost_price, is_profit_or_loss

The above example compares the value of the Selling_price field with the cost_price
field. It returns true in the is_profit_or_loss identifier if the Selling_price is not equal to
the cost_price, else returns false.

The chart count() command displays the count of the combination of Selling_price,
cost_price, and is_profit_or_loss values as a chart and in a tabular form.

3.5. Not equal to (!=) 11

Evaluation Process Plugin Documentation, Release release/3.0.0

Fig. 5: Not equals function

3.6 Equal to (==)

This function compares two operands. It returns True if the first operand is equal to the
second operand, else returns False.

Example:

| process eval("no_profit_or_loss=Selling_price==cost_price")
| chart count() by Selling_price, cost_price, no_profit_or_loss

The above example compares the value of the Selling_price field with the cost_price
field. It returns true in the no_profit_or_loss identifier if the Selling_price is equal to the
cost_price, else returns false.

The chart count() command displays the count of the combination of Selling_price,
cost_price, and no_profit_or_loss values as a chart and in a tabular form.

3.6. Equal to (==) 12

Evaluation Process Plugin Documentation, Release release/3.0.0

Fig. 6: Equals function

3.6. Equal to (==) 13

CHAPTER

FOUR

LOGICAL EXPRESSIONS

The Logical expression compares two boolean values and returns either True or False.

Generic syntax:

| process eval("identifier = first_operand logical_operator second_operand")

4.1 AND (&&)

This function compares two boolean values. It returns True if both both the values are
true. If they are not it returns False.

Example:

| process eval("is_profit=Selling_price>cost_price") | process eval("is_more_discount=discount>
↪→=51")
| process eval("is_more_profit=is_profit && is_more_discount")
| chart count() by is_profit, is_more_discount, is_more_profit

The above example first returns either true or false in the is_profit identifier by
comparing whether the value of the Selling_price field is greater than the value of
the cost_price field. It then returns true or false in the is_more_discount identifier
by comparing if the value of the discount field is greater than or equal to 51. Then
it compares the values of is_profit and is_more_discount fields. It returns true in the
is_more_profit identifier if both the values are true, else returns false.

The chart count() command displays the count of the combination of is_profit,
is_more_discount, and is_more_profit values as a chart and in a tabular form.

14

Evaluation Process Plugin Documentation, Release release/3.0.0

Fig. 1: AND function

4.2 OR (||)

This function compares two boolean values. It returns True if either value is true. If none
of the values are true, it returns False.

Example:

| process eval("is_loss=Selling_price<cost_price")
| process eval("is_profit=Selling_price>cost_price")
| process eval ("is_profitorloss = is_loss || is_profit ")
| chart count() by Selling_price, cost_price, is_loss, is_profit, is_profitorloss

The above example first returns true or false in the is_loss identifier by comparing if the
value of the Selling_price field is less than the value of the cost_price field. It then returns
true or false in the is_profit identifier by comparing if the value of the Selling_price field
is greater than the value of the cost_price field. Then it compares the values of is_loss
and is_profit fields. It returns true in the is_profitorloss identifier if either value is true,
else returns false.

The chart count() command displays the count of the combination of Selling_price,
cost_price, is_loss, is_profit, and is_profitorloss values as a chart and in a tabular form.

4.2. OR (||) 15

Evaluation Process Plugin Documentation, Release release/3.0.0

Fig. 2: OR function

4.2. OR (||) 16

CHAPTER

FIVE

CONDITIONAL AND COMPARISON FUNCTIONS

The Conditional and Comparison functions evaluate conditions and compare values.

5.1 If Statement

This function accepts a condition and a string value X. It compares the given condition;
if the condition is true, it returns the value provided in X.

Syntax:

| process eval("identifier=if(condition) {return X}")

Example:

| process eval("User_severity=if(risk_score >= 5) {return 'Risk user'}")
| chart count() by risk_score, User_severity

The above example returns Risk user in the User_severity identifier if the value of the
risk_score field is greater than or equal to 5.

The chart count() command displays the count of the combination of risk_score and
User_severity values as a chart and in a tabular form.

Fig. 1: If statement function

17

Evaluation Process Plugin Documentation, Release release/3.0.0

5.2 If-else Statement

This function accepts a condition and two strings X and Y. It compares the given
condition; if the condition is true, it returns X, else returns Y.

Syntax:

| process eval("identifier=if(condition) {return X} else {return Y}")

Example:

| process eval("is_profitloss=if((Selling_price%cost_price) == 0)
{return 'No profit/loss'} else {return 'profit/loss'}")
| fields Selling_price, cost_price, is_profitloss

The above example checks if the remainder value when Selling_price field is divided by
cost_price field is 0. It returnsNo profit/lost in the is_profitloss identifier if the condition
is true, else returns profit/loss.

The fields command displays the value of Selling_price, cost_price, and is_profitorloss
in a tabular form.

Fig. 2: If-else statement function

5.3 If-elseif-else Statement

This function accepts one or more alternating conditions and values. It compares the
condition with the following order.

5.2. If-else Statement 18

Evaluation Process Plugin Documentation, Release release/3.0.0

• if the first condition is true, it returns the value provided in X,

• else compares the second condition; if the second condition is true, it returns the
value provided in Y,

• else returns the value provided in Z.

Syntax:

| process eval("identifier=if(condition){return X} else-if(condition) {return Y} else { return Z}")

Example:

| process eval("User_severity=if(risk_score > 5) {return 'Risk user'}
else-if(risk_score<=0) {return 'No risk'} else {return 'Normal user'}")
| fields risk_score, User_severity

The above example checks if the value of the risk_score field is greater than 5. It returns
Risk user in the User_severity identifier if the condition is true, else it compares the
second condition, i.e., it checks if the value of the risk_score field is less than or equal to
0 and returns No risk if true. If both of these conditions is false, it returns Normal user.

The fields command displays the value of risk_score and User_severity in a tabular form.

Fig. 3: If-elseif-else statement function

5.4 Case Statement

This function accepts one or more alternating conditions and values. It compares the
condition with the following order.

• if case_one matches the value of the data, it returns the value provided in X,

• else checks if the case_two matches the value of the data; if the condition is true,
it returns the value in Y,

• else returns the value in Z by default.

5.4. Case Statement 19

Evaluation Process Plugin Documentation, Release release/3.0.0

Syntax:

| process eval("identifier=switch(data) {case(case_one) {return X}
case(case_two) {return Y} default {return Z}}")

Example:

| process eval("Access_type=switch(action) {case('allow') {return 'Allow access'}
case('deny') {return 'Deny access'} default {return 'Forward access'}}")
| fields action, Access_type

The above example returns Allow access in the Access_type identifier if the the value
of the action field is access; Else if the value of action is deny; it returns Deny access,
else it returns Forward access by default.

The fields command displays the value of action and Access_type in a tabular form.

Fig. 4: Case statement function

5.5 cidrmatch

This function accepts two arguments, a CIDR (Classless Inter-Domain Routing) notation,
and an IP address. It returns True if the IP address matches the CIDR notation, else
returns False.

Syntax:

| process eval("identifier=cidrmatch(CIDR, IP)")

Example:

| process eval("is_local_ip=cidrmatch('127.0.0.0/8', device_ip)")

The above example returns true in the is_local_ip identifier if the value of the field
device_ip matches the CIDR notation 127.0.0.0/8, else returns false.

5.5. cidrmatch 20

Evaluation Process Plugin Documentation, Release release/3.0.0

Fig. 5: Cidrmatch function

5.6 coalesce

This function accepts an arbitrary number of arguments as inputs and returns the value
of the first argument that is not null.

Syntax:

| process eval("identifier=coalesce(X,Y,...)")

Example:

| process eval("ip_add=coalesce(ip_address,device_ip)")
| fields ip_address, device_ip, ip_add

The above example returns the value of the ip_address field in the ip_add identifier if
the its value is not null. If null, it checks the value of the device_ip field. If the device_ip
field is not null, it returns its value in the ip_add identifier .

The fields command displays the value of ip_address, device_ip, and ip_add in a tabular
form.

Fig. 6: Coalesce function

5.6. coalesce 21

Evaluation Process Plugin Documentation, Release release/3.0.0

5.7 false

This function returns False. The false function in combination with other functions
represents a condition that is undoubtedly false, i.e., 1==0. Unlike other functions,
this function does not take any argument.

Syntax:

| process eval("identifier=false()")

Example:

| process eval("is_profit=if(Selling_price > cost_price) {return true()} else {return false()}")
| chart count() by Selling_price, cost_price, is_profit

The above example checks the value in the Selling_price and cost_price fields. It returns
true in the is_profit identifier if the Selling_price is greater than the cost_price, else
returns false.

The chart count() command displays the count of the combination Selling_price and
cost_price values as a chart and in a tabular form.

Fig. 7: False function

5.8 in

This function accepts a field of an event and a list of string values. It returns True if one
of the values in the list matches the value specified in the field, else returns False.

Syntax:

5.7. false 22

Evaluation Process Plugin Documentation, Release release/3.0.0

| process eval("identifier=in(field, value1, value2, value3, ...)")

Example:

| process eval("isUserAdmin=in(user, 'Administrator', 'administrator', 'Admin', 'admin')")
| chart count() by user, isUserAdmin

The above example returns true in the isUserAdmin identifier if the value in the user
field matches with any one value in the list, i.e., Administrator, administrator, Admin,
and admin, else returns false.

The chart count() command displays the count of the combination of user and
isUserAdmin values as a chart and in a tabular form.

Fig. 8: In function

5.9 match

This function accepts a text field X and a regex (regular expression) string. It returns
True or False based on whether the given regular expression finds a match against any
substring of the text in the field X.

This function also returns True if the text in regex string exactly matches the text in the
field X.

Syntax:

| process eval("identifier=match(X, regex)")

Example:

5.9. match 23

Evaluation Process Plugin Documentation, Release release/3.0.0

| process eval("is_coltype_filesystem=match(col_type,'file.*')") | chart count() by col_type, is_
↪→coltype_filesystem

The above example compares the regex string ‘file.*’ with the value in the col_type field.
It returns true in the is_coltype_filesystem identifier if the pattern is an exact match or
is a substring of the value of col_type field, else returns false.

The chart count() command displays the count of the combination of col_type and
is_coltype_filesystem values as a chart and in a tabular form.

Fig. 9: Match function

5.10 like

This function accepts a text field X and a pattern. It returns True if the text in the field X
matches the given pattern, else returns False. This function also returns True if the text
in the pattern exactly matches the text in the field X.

The pattern supports a regular expression as well as the percent character (%) for
wildcards and an underscore character (_) for a single character match.

Syntax:

| process eval("identifier=like(X, pattern)")

Example:

| process eval("is_coltype_syslog=like(col_type,'sys%')")
| chart count() by col_type, is_coltype_syslog

The above example compares the sys% pattern with the value in the col_type field. It
returns true in the is_coltype_filesystem identifier if the sys% pattern is an exact match

5.10. like 24

Evaluation Process Plugin Documentation, Release release/3.0.0

or is a substring of the value of col_type field, else returns false.

The chart count() command displays the count of the combination of col_type and
is_coltype_syslog values as a chart and in a tabular form.

Fig. 10: Like function

5.11 null

This function returns null. You use the null function in combination with other functions.
You use this function in case you do not want any value returned in the user interface.
Unlike other functions, this function does not take any argument.

Syntax:

| process eval("identifier=null()")

Example:

| process eval("User_severity=if(score <= 5) {return null() } else {return 'Risk user'}")
| chart count() by score, User_severity

The above example returns null in the User_severity identifier if the value of the score
field is less or equal to 5, else returns Risk user.

The chart count() command displays the count of the combination of score and
User_severity values as a chart and in a tabular form.

5.11. null 25

Evaluation Process Plugin Documentation, Release release/3.0.0

Fig. 11: Null function

5.12 nullif

This function compares two arguments, X and Y. If X = Y, it returns null, else returns the
value of X.

Syntax:

| process eval("identifier=nullif(X, Y)")

Example:

| process eval("access_type=nullif(access,'DELETE')")
| chart count() by access, access_type

The above example returns null in the access_type identifier if the value of the access
field is DELETE, else returns the value of the access.

The chart count() command displays the count of the combination of access and
access_type values as a chart and in a tabular form.

5.12. nullif 26

Evaluation Process Plugin Documentation, Release release/3.0.0

Fig. 12: Nullif function

5.13 searchmatch

This function accepts a string field X as input. It returns True if the value of X matches
the event type, else returns False. You can use the pipe (|) symbol to separate multiple
values of X.

Syntax:

| process eval("identifier=searchmatch(X)")

Example:

| process eval("is_authenticaion_event=searchmatch('Authentication | Access')")

The above example returns null in the is_authentication_event identifier if the value of
the access field is DELETE, else returns false.

Fig. 13: Searchmatch function

5.13. searchmatch 27

Evaluation Process Plugin Documentation, Release release/3.0.0

5.14 true

This function returns True. It is often used in combination with other functions to
represent a condition that is undoubtedly true, i.e., 1==1. Unlike other functions, this
function does not take any argument.

Syntax:

| process eval("identifier=true()")

Example:

| process eval("is_profit=if(Selling_price > cost_price) {return true()} else {return false()}")
| chart count() by Selling_price, cost_price, is_profit

The above example returns true in the is_profit identifier if the value of the Selling_price
field is greater than the value of the cost_price field, else returns false.

The chart count() command displays the count of the combination of Selling_price,
cost_price, and is_profit values as a chart and in a tabular form.

Fig. 14: True function

5.14. true 28

CHAPTER

SIX

MULTIVALUE FUNCTIONS

TheMultivalue functions evaluate multivalue arguments and return multivalue fields.

6.1 split

This function accepts two arguments, X and Y as inputs. It splits the values of the field
X by the delimiter (such as comma, semicolon, blank space) specified in the field Y and
returns a multivalue field containing a list of split values.

Syntax:

| process eval("identifier=split(X,Y)")

Example:

| process eval("split_message=split(message, ' ')")
| fields message, split_message

The above example splits the value of the message field when the split function
encounters a space in the value and returns split values in the split_message identifier.

The fields command displays the value of fields and split_message in a tabular form.

Fig. 1: Split function

29

Evaluation Process Plugin Documentation, Release release/3.0.0

6.2 commands

This function accepts a search string X as input, or a field that contains a search string,
and returns a multivalue field containing a list of the commands used in X.

Syntax:

| process eval("identifier=commands(X)")

Example:

| process eval("commands_list=commands('chart count() | fields name | rename message as alert
↪→')")
| fields commands_list

The above example returns the list of the commands present in the provided search
string, i.e., chart count() | fields name | rename message as alert, and returns them in
the identifier commands_list.

The fields command displays the value of commans_list in a tabular form.

Fig. 2: Commands function

6.3 mvappend

This function accepts two or more arguments as inputs and appends the values of the
arguments. It returns a multivalue result containing a list of all the appended values.
The arguments can be strings, multivalue fields or single value fields.

Syntax:

| process eval("identifier=mvappend(X, ...)")

Example:

| process eval("ip_address=mvappend(source_address, destination_address)")
| fields source_address, destination_address, ip_address

6.2. commands 30

Evaluation Process Plugin Documentation, Release release/3.0.0

The above example returns the appended value of the source_addess and
destination_address fields in the ip_address identifier.

The fields command displays the value of source_address, destination_address, and
ip_address in a tabular form.

Fig. 3: Mvappend function

6.4 mvcount

This function accepts either amultivalue field or a single value fieldX as input and returns
the count of the values of that field.

Syntax:

| process eval("identifier=mvcount(X)")

Example:

| process eval("message_character_count=mvcount(split(message, ' '))")
| fields message, message_character_count

The above example compares the values obtained from split(message, ‘ ‘) to the pattern
acco.. acco. means any sequence of letters that can follow the string acco. If the values
obtained from split(message, ‘ ‘) and pattern match, it returns the matched value in the
filter_account_message identifier. If they don’t match it returns 0.

The fields command displays the value of message and message_character_count in a
tabular form.

Fig. 4: Mvcount function

6.4. mvcount 31

Evaluation Process Plugin Documentation, Release release/3.0.0

6.5 mvdedup

This function removes duplicate values of a multivalue field X and returns a multivalue
output in a list.

Syntax:

| process eval("identifier=mvdedup(X)")

Example:

| process eval("discount_ml=if(discount < 50) {return 'less discount less'}
else {return 'more discount more'}")
| process eval("result=mvdedup(split(discount_ml, ' '))")
| fields discount, discount_ml, result

The above example first returns less discount less in the discount_ml identifier if discount
is less than 50, else returns more discount more. The split function splits the value
of discount_ml when it encounters a space. Then, the mvdeup function removes the
duplicate values in the value obtained from the split(discount_ml, ‘ ‘) and returns it in
the result identifier.

The fields command displays the value of discount, discount_ml, and result in a tabular
form.

Fig. 5: Mvdedup function

6.6 mvfilter

This function accepts a multivalue field X and a pattern as inputs. It filters the values
of the field using the pattern, and returns a multivalue or a single value field containing
the list of values that match the given pattern.

Syntax:

| process eval("identifier=mvfilter(X, pattern)")

6.5. mvdedup 32

Evaluation Process Plugin Documentation, Release release/3.0.0

Example:

| process eval("filter_account_message=mvfilter(split(message, ' '), 'acco.*')")
| fields message, filter_account_message

The above example compares the values obtained from split(message, ‘ ‘) to the pattern
acco.*. acco.* mean any sequence of letters can follow the string acco. If the values
obtained from split(message, ‘ ‘) and pattern matches, it returns the matched value in
the filter_account_message identifier, else returns 0. Refer to the split section to know
on the value from split(message, ‘ ‘).

The fields command displays the value of fields message and filter_account_message in
a tabular form.

Fig. 6: Mvfilter function

6.7 mvfind

This function accepts two arguments, a multivalue field X, and a regex (regular
expression) pattern Y. It tries to match the regular expression against any substring
of the value in X. If there is a match, the function returns the index (beginning from
zero) of the first value that matches the regex pattern. If there isn’t a match, it returns
null.

Syntax:

| process eval("identifier=mvfind(X, Y)")

Example:

| process eval("indexof_account=mvfind(split(message, ' '), 'acco.*')")
| fields message, indexof_account

The above example search for the first match in the values obtained from split(message,
‘ ‘) to the pattern acco.*. acco.* mean any sequence of letters can follow the string acco.

6.7. mvfind 33

Evaluation Process Plugin Documentation, Release release/3.0.0

If the function finds a match in the values obtained from split(message, ‘ ‘) to the pattern
acco.*, it returns the index (position) of the first match (index starts from zero) in the
indexof_account identifier.

The fields command displays the value of fields message and indexof_account in a
tabular form.

Fig. 7: Mvfind function

6.8 mvindex

This function accepts up to three arguments, a multivalue field X, a number start_index
and a number end_index. It evaluates the values of the string X and returns the value
that starts at the index specified by start_index and ends at the index specified by
end_index.

• The field X and the start_index are required. The end_index is inclusive and
optional while providing positive values for both the start and end index.

• If the end_index is not specified, the function returns only the value at start_index.

• The start_index and end_index can be negative. Both the start_index and
end_index is required while providing negative values for either the start_index
or end_index.

• If the indices are out of range or invalid, the result is null.

Syntax:

| process eval("identifier=mvindex(X, start_index, end_index)")

Example:

| process eval("index_message=mvindex(split(message, ' '), 2)")
| fields message, index_message

6.8. mvindex 34

Evaluation Process Plugin Documentation, Release release/3.0.0

The above example returns the third value (index starts from 0) in the values obtained
from split(message, ‘ ‘) in the index_message identifier.

The fields command displays the value of fields message and index_message in a tabular
form.

Fig. 8: Mvindex function

6.9 mvjoin

This function accepts two arguments, a multivalue field X, and a string delimiter (such
as comma, semicolon, blank space) Y. The function concatenates the individual values
within X using the value of Y as a separator.

Syntax:

| process eval("identifier=mvjoin(X, Y)")

Example:

| process eval("result=mvjoin(split(message, ' '), ',')")
| fields message, result

The above example accepts the values from split(message, ‘ ‘) and joins the received
values with a comma. It returns the joined values in the result identifier. Refer to the
split section to know on the value from split(message, ‘ ‘).

The fields command displays the value of the message, and result in a tabular form.

6.9. mvjoin 35

Evaluation Process Plugin Documentation, Release release/3.0.0

Fig. 9: Mvjoin function

6.10 mvrange

It takes up to three arguments: a starting number X, an ending number Y, and an
optional step increment Z. It returns the range of X and Y, where Y is excluded from
the result.

• If Z is not provided, the default increment step is +1.

• If Z is a timespan like 1d (1 day), then X and Y are treated as UNIX time.

Syntax:

| process eval("identifier=mvrange(X, Y, Z)")

Example 1:

| process eval("range=mvrange(1,5)")

The above example returns the value from 1 to 5 (excluding 5) with +1 increment in the
range identifier. The result is 1, 2, 3, 4.

Fig. 10: Mvrange function

Example 2:

6.10. mvrange 36

Evaluation Process Plugin Documentation, Release release/3.0.0

| process eval("range=mvrange(1.1,5)")

The above example returns the value from 1.1 to 5 with +1 increment in the mvrange
identifier. The result is 1.1, 2.1, 3.1, 4.1.

Example 3:

| process eval("range=mvrange(1.5,6,1.5)")

The above example returns the value from 1.5 to 6 (excluding 6) with +1.5 increment in
the mvrange identifier. The result is 1.5, 3, 4.5.

Example 4:

| process eval("range=mvrange(1134,343434,'1d')")

The above example returns the value from 1134 to 343434 with +86400 increment in
the mvrange identifier. The result is 1134, 87534, 173934, 260334.

Here, 1d = 86400 seconds

Example 5:

| process eval("range=mvrange(1233.124224,2434455.1232323,'1w')")

The above example returns the value from 1233.124224 to 2434455.1232323
with +604800 increment in the mvrange identifier. The result is 1233.124224,
606033.124224, 1210833.1242240001, 1815633.1242240001, 2420433.124224.

Here, 1w = 604800 seconds

6.11 mvsort

This function accepts a multivalue field X and returns a multivalue field containing the
list of values of the field X sorted in lexicographical order (alphabetically).

• In lexicographical order, numbers are sorted by digits. So numbers are sorted
before letters. If the first digits match, the second digits get compared. The
comparison is like a string. For example, 10 comes before 2, but 111 comes after 10
(and also after 1000) because 0 is less than 1. A lexical sort compares the characters
in each string as characters, not integral values.

• All the uppercase letters are sorted before the lowercase letters.

Syntax:

6.11. mvsort 37

Evaluation Process Plugin Documentation, Release release/3.0.0

| process eval("identifier=mvsort(X)")

Example 1:

| process eval("sort=mvsort(split(message, ' '))") | fields message, sort

The above example accepts the values from split(message, ‘ ‘) and sorts them according
to the rule described above. It returns the sorted value in the sort=mvsort identifier.

The fields command displays the value of the message and sort in a tabular form.

Fig. 11: Mvsort function

Example 2:

If testData = {“test1”, 1, 1.2}

| process eval("sort=mvsort(testData)")

The above example sorts the data in the testData field according to the rule described
above and returns the sorted value in the identifier sort. The result is [1, 1.2, “test1”]

6.12 mvzip

This function accepts up to three arguments. It takes two multivalue fields, X and Y and
combines the values of these fields. It joins the first value of the X field with the first
value of the Y field and the second value of X with the second value of Y. The third field
Z specifies a delimiting character that joins the two values of the fields X and Y. The Z
field is optional, and the default delimiter is a comma.

Syntax:

| process eval("identifier=mvzip(X,Y,Z)")

Example 1:

6.12. mvzip 38

Evaluation Process Plugin Documentation, Release release/3.0.0

If users = [“john”, “jack”, “kim”], machines = [“lp1”, “lp2”, “lp3”]

| process eval("x=mvzip(users,machines)")

The above example accepts the values from users and machines fields. It joins the first
value of the user field with the first value of themachines field and and the second value
of the users field with the second value of the machines field and continues in the same
way. A comma separates the values in the joined fields. It returns the joined value in
the x identifier. Result: [“john,lp1”, “jack,lp2”, “kim,lp3”]

Example 2:

| process eval ("category_split= split(event_category, ' ')")
| process eval ("event_split= split(event_type, ' ')")
| process eval ("zip= mvzip(category_split,event_split, ' ')")
| fields event_category, event_type ,category_split, event_split, zip

The above example accepts the values of category_split and event_split fields. It joins
the first value of the category_split field with the first value of the event_split field and
the second value of the category_split field with the second value of the event_split
field and continues in the same way. Space separates the values in the joined fields. It
returns the joined value in the zip identifier. Refer to the split section to know on the
value from split(event_category, ‘ ‘) and split(event_type, ‘ ‘).

The fields command displays the value of event_category, event_type, category_split,
and zip in a tabular form.

Fig. 12: Mvzip function

6.12. mvzip 39

CHAPTER

SEVEN

STATISTICAL FUNCTIONS

The Statistical functions evaluate the maximum andminimum value of numeric or string
argument.

7.1 max

This function accepts an arbitrary number of arguments as inputs and returns the
maximum of any numeric or string argument. The values of arguments get converted
into ASCII (American Standard Code for Information Interchange), so a string is greater
than a number.

Syntax:

| process eval("identifier=max(X, ...)")

Example:

| process eval("Maximum_datasize=max(received_datasize,sent_datasize)")
| fields received_datasize, sent_datasize, Maximum_datasize

The above example returns the highest value of the received_datasize and sent_datsize
fields in the Maximum_datasize identifier.

The fields command displays the value of received_datasize, sent_datasize, and
Maximun_datasize in a tabular form.

40

Evaluation Process Plugin Documentation, Release release/3.0.0

Fig. 1: Max function

7.2 min

This function accepts an arbitrary number of arguments as inputs and returns the
minimum of any numeric or string argument. The values of arguments get converted
into ASCII (American Standard Code for Information Interchange), so a string is greater
than a number.

Syntax:

| process eval("identifier=min(X, ...)")

Example:

| process eval("Minimum_datasize=min(received_datasize,sent_datasize)")
| fields received_datasize, sent_datasize, Minimum_datasize

The above example returns the lowest value of the received_datasize and sent_datsize
fields in the Minimum_datasize identifier.

The fields command displays the value of received_datasize, sent_datasize, and
Minimum_datasize in a tabular form.

Fig. 2: Min function

7.2. min 41

CHAPTER

EIGHT

CONVERSION FUNCTIONS

The Conversion functions convert numbers and strings to different formats.

8.1 printf

This function accepts a string format and arguments as inputs and returns a formatted
string value based on these inputs.

Syntax:

| process eval("identifier=printf(format, arguments)")

• format: The format is a character string that comprises one or more format
conversion specifiers. The format must always be within single quotes (‘ ‘).

• arguments: The arguments can include one or more string, number, or field name.

Example:

| process eval("result=printf('Hello %s. Your user score is %d.',user,score)")
| fields user, score, result

The above example assigns the value of the user field to %s and score field to %d and
returns the defined sequence of strings in the result identifier.

The fields command displays the value of the user, score, and result in a tabular form.

42

Evaluation Process Plugin Documentation, Release release/3.0.0

Fig. 1: Printf function

8.2 tonumber

This function accepts a string value X, and a BASE as inputs. It converts the string X to
a number by the specified BASE.

Syntax:

| process eval("identifier=tonumber(X, BASE)")

• X can be a field name or a string value.

• The BASE defines the base number to convert the string value X. BASE can range
from 2 to 36.

Example:

| process eval("result=tonumber('0A5',12)")

The above example converts the string value 0A5 to a number by taking base 12 and
returns it in the result identifier.

Fig. 2: Tonumber function

8.2. tonumber 43

Evaluation Process Plugin Documentation, Release release/3.0.0

8.3 tostring

This function accepts at least one argument X as input and converts the input value X
to a string. If X is a number, the second field Y can be “hex,” “commas,” or “duration.”
Y is optional.

Syntax:

| process eval("identifier=tostring(X, Y)")

• If X is a number, the function converts the number to a string,

• If X is a Boolean value, it returns the corresponding string value, i.e., True or False.

Syntax Description
tostring(X, “hex”) Converts the input value X to hexadecimal.
tostring(X, “commas”) Formats the input value X with commas. If the number

includes decimals, it is rounded to the nearest two
decimal places.

tostring(X, “duration”) Converts the input value X (in seconds) to the readable
time format HH:MM:SS.

Example 1:

| process eval("x=tostring(12)")

The above example converts the numeric value of 12 to string.

Example 2:

| process eval("result=tostring(score,'hex')")

The above example converts the numeric value of the score field to its corresponding
hexadecimal string value and assigns it in the result identifier.

Fig. 3: Tostring function

Example 3:

8.3. tostring 44

Evaluation Process Plugin Documentation, Release release/3.0.0

| process eval("x=tostring(65,'duration')")

The above example converts the numeric value 65 into the readable time format
HH:MM: and returns it in the x identifier. The result is 00:01:05.000.

Example 4:

| process eval("x=tostring(65132.6789,'commas')")

The above example formats the numeric value 65132.6789 with a comma and rounds
the decimal value to the two decimal place (hundredths position) and returns it in the x
identifier. The result is 65,132.68.

8.3. tostring 45

CHAPTER

NINE

EXPRESSION WITH PARENTHESES

Parentheses (curved marks) can be used to group arguments in an eval expression.
Parentheses clarify the order of expressions, i.e., the eval command evaluates the parts
of expression within the parentheses at first.

Example:

| process eval("Profit_percent=(Selling_price-cost_price)/cost_price * 100")
| fields Selling_price, cost_price, Profit_percent

The above example calculates the specified arithmetic expression and returns its value
in the Profit_percent identifier. While performing the calculation, the function first
evaluates the part of the expression within the parentheses, (Selling_price-cost_price),
then it uses this result in the rest of the expression.

The fields command displays the value of Selling_price, cost_price, and Profit_percent
in a tabular form.

Fig. 1: Expression with parentheses

46

CHAPTER

TEN

STRING FUNCTIONS

The String functions evaluate string values and fields.

10.1 len

This function accepts a string value X as input. It evaluates the character length of the
string and returns the count of the number of characters in the string.

Syntax:

| process eval("identifier=len(X)")

Example:

| process eval("message_length=len(message)")
| fields message, message_length

The above example counts the length of the character in the message field and returns
the result in the message_length identifier.

The fields command displays the value of themessage andmessage_length in a tabular
form.

Fig. 1: Len function

47

Evaluation Process Plugin Documentation, Release release/3.0.0

10.2 substr

This function accepts up to three arguments, a string value X, a start index and an end
index. It evaluates the substring of the string X and returns the substring that starts at
the index specified by start_index and ends at the index specified by end_index. Here
the end_index is exclusive.

Syntax:

| process eval("identifier=substr(X, start_index, end_index)")

Example:

| process eval("substring=substr(col_type, 0, 4)")

The above example returns the substring of the value of the col_type event, starting at
index 0 and ending at index 4, in the substring identifier.

Fig. 2: Substr function

10.3 lower

This function accepts only one string argument X as input. It converts the string to
lowercase and returns the converted string value.

Syntax:

| process eval("identifier=lower(X)")

Example:

| process eval("username=lower(user)") | fields user, username

The above example converts the value of the user field to lowercase and returns it in
the username identifier.

The fields command displays the value of user and username in a tabular form.

10.2. substr 48

Evaluation Process Plugin Documentation, Release release/3.0.0

Fig. 3: Lower function

10.4 upper

This function accepts only one string argument X as input and converts the string to
uppercase and returns the converted string value.

Syntax:

| process eval("identifier=upper(string_value)")

Example:

| process eval("username=upper(user)") | fields user, username

The above example converts the value of the user field to uppercase and returns it in
the username identifier.

The fields command displays the value of user and username in a tabular form.

Fig. 4: Upper function

10.4. upper 49

Evaluation Process Plugin Documentation, Release release/3.0.0

10.5 trim

This function accepts only one string argument X. It trims the spaces to the left and right
in the string and returns a trimmed value. Trailing spaces are the white spaces located
at the end of a line, without any other characters following it, for example blank spaces
and tabs.

Syntax:

| process eval("identifier=trim(X)")

The above example removes the spaces to the left and right from the Bob and returns
the trimmed value in the username identifier.

Example:

| process eval("username=trim(' Bob ')")

Fig. 5: Trim function

10.6 ltrim

This function accepts up to two string arguments X and Y as inputs. It trims the string
Y from the left side of the field X and returns a trimmed value. If Y is not defined, it
trims the spaces from the left side.

Syntax:

| process eval("identifier=ltrim(X, Y)")

Example:

| process eval("result=ltrim(device_name, 'local')")

The above example removes the string local from the left side in the value of the
device_name field and returns the trimmed value in the result identifier.

10.5. trim 50

Evaluation Process Plugin Documentation, Release release/3.0.0

Fig. 6: Ltrim function

10.7 rtrim

This function takes up to two string arguments X and Y as inputs. It trims the strings
Y from the right side of the field X and returns a trimmed value. If Y is not defined, it
trims the trailing spaces from the right side.

Syntax:

| process eval("identifier=rtrim(X, Y)")

Example:

| process eval("result=rtrim(device_name, 'host')")

The above example removes the string host from the right side in the value of the
device_name field and returns the trimmed value in the result identifier.

Fig. 7: Rtrim function

10.8 replace

This function accepts three arguments as inputs: a string X, a regex string Y, and a string
Z. It substitutes the string Z in the string X for every occurrence of the regex string Y
and returns a string value.

Syntax:

10.7. rtrim 51

Evaluation Process Plugin Documentation, Release release/3.0.0

| process eval("identifier=replace(X, Y, Z)")

Example:

| process eval("result=replace('123', '[0-9]', 'X')")

The above example substitutes ‘X’ in the string 123 for the every occurence of the regex
string [0-9] and returns the replaced value in the result identifier.

Fig. 8: Replace function

10.9 spath

This function accepts two arguments, X and Y, where X is the structured data type in
XML or JSON format, and Y is the XML or JSON formatted location path. It returns a
value extracted from the structured data type in X, based on the location path in Y.

Syntax:

| process eval("identifier=spath(X, Y)")

Example 1:

| process eval("usern=spath('<name>john</name>', 'name')")

The above example extracts the value from the location name and returns it in the usern
identifer.

Fig. 9: Spath function

10.9. spath 52

Evaluation Process Plugin Documentation, Release release/3.0.0

Example 2:

| process eval("usern=spath('{name:\john\}', 'name')")

The above example extracts the value from the location name: and returns it in the
usern identifer. The result is usern=john.

Note: For JSON format data,

• Keys must be without quotes. LogPoint currently does not support nested quotes.

• If the value of any key is a string, replace quote with backslash as shown in Example
2 above.

• For example, the JSON data is in a key-value pair. Where, keys and values must be
within double quotes {“name”:”John”}. However, while using the spath function,
the JSON data is written as {name:\john\}.

10.10 urldecode

This function accepts an escaped URL character X and returns the decoded or
unescaped URL string.

Syntax:

| process eval("identifier=urldecode(X)")

Example:

| process eval("decoded_url=urldecode('http%3A%2F%2Fwww.logpoint.com%2Fdownload%3Fr
↪→%3Dheader')")

The above example decodes an escaped url and returns the decoded url, i.e., http:
//www.logpoint.com/download?r=header in the decoded_url identifier.

Fig. 10: Urldecode function

10.10. urldecode 53

http://www.logpoint.com/download?r=header
http://www.logpoint.com/download?r=header

CHAPTER

ELEVEN

CRYPTOGRAPHIC FUNCTIONS

The Cryptographic functions evaluate hash functions and return a fixed-size
alphanumeric string.

11.1 md5

This function accepts a string value X as input and returns the md5 hash of the string
value. The md5 is a hash function that generates a 128-bit hash value of the string.

Syntax:

| process eval("identifier=md5(X)")

Example:

| process eval("hash=md5(device_name)")

The above example converts the value of the device_name field into its corresponding
md5 hash value and returns the value 421AA90E079FA326B6494F812AD13E79 in the
hash identifier.

Fig. 1: Md5 function

54

Evaluation Process Plugin Documentation, Release release/3.0.0

11.2 sha1

This function accepts a string value X and returns the sha1 hash of the string value.
The sha1 is a cryptographic hash function that generates a 160-bit (20-byte) hash value,
typically rendered as a hexadecimal number, 40 digits long.

Syntax:

| process eval("identifier=sha1(X)")

Example:

| process eval("sha1_value=sha1(device_name)")

The above example returns the corresponding sha1 hash value of device_name in the
sha1_value identifier.

Fig. 2: Sha1 function

11.3 sha256

This function accepts a string value X and returns the sha256 hash of a value. The
sha256 is a cryptographic hash function that generates an almost-unique 256-bit
(32-byte) hash value, typically rendered as a hexadecimal number, 64 digits long.

Syntax:

| process eval("identifier=sha256(X)")

Example 1:

| process eval("sha256_value=sha256(device_name)")

The above example returns the corresponding sha256 hash value of the device_name
in the sha256_value identifier.

11.2. sha1 55

Evaluation Process Plugin Documentation, Release release/3.0.0

Fig. 3: Sha256 function

11.4 sha512

This function accepts a string value X and returns the sha512 hash of a value. The
sha512 is a cryptographic hash function that generates an almost-unique 512-bit
(32-byte) hash value, typically rendered as a hexadecimal number, 128 digits long.

Syntax:

| process eval("identifier=sha512(X)")

Example:

| process eval("sha512_value=sha512(device_name)")

The above example returns the corresponding sha512 hash value of the device_name
in the sha512_value identifier.

Fig. 4: Sha512 function

11.4. sha512 56

CHAPTER

TWELVE

MATHEMATICAL FUNCTIONS

TheMathematical functions evaluate mathematical data.

12.1 abs

This function accepts a numerical value X as input and returns the absolute value of the
number as the output.

Syntax:

| process eval("identifier=abs(X)")

Example:

| process eval ("Profit= Selling_price - cost_price")
| process eval ("abs_value=abs(Profit)")
| fields Selling_price, cost_price, Profit, abs_value

The above example first calculates value for a Profit field. It then computes the absolute
value of the Profit field and returns its value in the abs_value identifier.

The fields command displays the value of Selling_price, cost_price, Profit, and abs_value
in a tabular form.

Fig. 1: Abs function

57

Evaluation Process Plugin Documentation, Release release/3.0.0

12.2 floor

This function accepts a numerical value X as input and returns the greatest integer less
than or equal to X.

Syntax:

| process eval("identifier=floor(X)")

Example:

| process eval("price_per_unit=Selling_price/unit_sold")
| process eval("final_price = floor(price_per_unit)")
| fields Selling_price, unit_sold, price_per_unit, final_price

The above example first calculates value for a price_per_unit field. It then computes the
greatest integer less than or equal to the value of Profit field and returns its value in the
final_price identifier.

The fields command displays the value of Selling_price, cost_price, Profit, and abs_value
in a tabular form.

Fig. 2: Floor function

12.3 ceiling

This function accepts a numerical value X as input and rounds the number up to the
smallest following integer value.

Syntax:

| process eval("identifier=ceiling(X)")

Example:

| process eval("ceiling_duration=ceiling(duration)")

12.2. floor 58

Evaluation Process Plugin Documentation, Release release/3.0.0

The above example accepts the value of the duration field and returns the smallest
following integer value in the ceiling_duration identifier.

Fig. 3: Ceiling function

12.4 exp

This function accepts a numerical value X as input and evaluates the exponentiation with
base e and X as the exponent, i.e., eX . You can also use the function expe instead of
the function exp.

Syntax:

| process eval("identifier=exp(X)")
or
| process eval("identifier=expe(X)")

Example:

| process eval("result=exp(discount)") | fields discount, result
or
| process eval("result=expe(unit_sold)") | fields unit_sold, result

The above example evaluates the exponentiation to the base e of the discount field and
returns it in the result identifier.

The fields command displays the value of discount and result in a tabular form.

12.4. exp 59

Evaluation Process Plugin Documentation, Release release/3.0.0

Fig. 4: Exp function

Fig. 5: Expe function

12.5 exp2

This function accepts a numerical value X as input and evaluates the exponentiation with
base 2 and X as the exponent, i.e., 2X .

Syntax:

| process eval("identifier=exp2(X)")

Example:

| process eval("result=exp2(unit_sold)") | fields unit_sold, result

The above example evaluates the exponentiation to the base 2 of the unit_sold field
and returns it in the result identifier.

The fields command displays the value of unit_sold and result in a tabular form.

Fig. 6: Exp2 function

12.5. exp2 60

Evaluation Process Plugin Documentation, Release release/3.0.0

12.6 exp10

This function accepts a numerical value X as input and evaluates the exponentiation with
base 10 and X as the exponent, i.e., 10X .

Syntax:

| process eval("identifier=exp10(X)")

Example:

| process eval("result=exp10(unit_sold)") | fields unit_sold, result

The above example evaluates the exponentiation to the base 10 of the unit_sold field
and returns it in the result identifier.

The fields command displays the value of unit_sold and result in a tabular form.

Fig. 7: Exp10 function

12.7 log

This function accepts a numerical value X as input and evaluates the logarithm of X with
base e, i.e., loge(X). You can also use the function loge instead of the function log.

Syntax:

| process eval("identifier=log(X)")
or
| process eval("identifier=loge(X)")

Example:

| process eval("result=log(unit_sold)") | fields unit_sold, result
or
| process eval("result=loge(unit_sold)") | fields unit_sold, result

12.6. exp10 61

Evaluation Process Plugin Documentation, Release release/3.0.0

The above example evaluates the logarithm to the base e of the unit_sold field and
returns it in the result identifier.

The fields command displays the value of unit_sold and result in a tabular form.

Fig. 8: Log function

Fig. 9: Loge function

12.8 log2

This function accepts a numerical value X as input and evaluates the logarithm of X with
base 2, i.e., log2(X).

Syntax:

| process eval("identifier=log2(X)")

Example:

| process eval("result=log2(unit_sold)") | fields unit_sold, result

The above example evaluates the logarithm to the base 2 of the unit_sold field and
returns it in the result identifier.

The fields command displays the value of unit_sold and result in a tabular form.

12.8. log2 62

Evaluation Process Plugin Documentation, Release release/3.0.0

Fig. 10: Log2 function

12.9 log10

This function accepts a numerical value X as input and evaluates the logarithm of X with
base 10, i.e., log10(X).

Syntax:

| process eval("identifier=log10(X)")

Example:

| process eval("result=log10(unit_sold)") | fields unit_sold, result

The above example evaluates the logarithm to the base 10 of the unit_sold field and
returns it in the result identifier.

The fields command displays the value of unit_sold and result in a tabular form.

Fig. 11: Log10 function

12.10 pi

This function returns the first 12 digits of the value of pi. Unlike other functions, this
function does not take any argument.

12.9. log10 63

Evaluation Process Plugin Documentation, Release release/3.0.0

Syntax:

| process eval("identifier=pi()")

Example:

| process eval ("area_circle=pi() * (radius^2)")
| chart count () by radius, area_circle

The above example calculates the area of the circle where pi() gives the value of the
mathematical constant (π). The function returns area in the area_circle identifier.

The chart count() command displays the count of the combination of radius and
area_circle values as a chart and in a tabular form.

Fig. 12: pi function

12.11 sqrt

This function accepts a numeric value X as input and returns the square root of the
numeric value.

Syntax:

| process eval("identifier=sqrt(X)")

Example:

| process eval("result=sqrt(unit_sold)") | fields unit_sold, result

12.11. sqrt 64

Evaluation Process Plugin Documentation, Release release/3.0.0

The above example returns the square root of the value of the unit_sold field in the
unit_sold identifier.

The fields command displays the value of unit_sold and result in a tabular form.

Fig. 13: Sqrt function

12.12 random

This function returns a random number ranging between 0 and 1. It does not take any
argument. You can use this function in case you want a random number for any eval
expression.

Syntax:

| process eval("identifier=random()")

Example:

| process eval("x=random()")

The above example returns a random number between 0 and 1 in the x identifier.

Fig. 14: Random function

12.12. random 65

Evaluation Process Plugin Documentation, Release release/3.0.0

12.13 exact

This function accepts a numeric calculation X as input and returns a result with a
significant amount of precision.

Syntax:

| process eval("identifier=exact(X)")

Example:

| process eval("result=exact(3.4*unit_sold)") | fields unit_sold, result

The above example returns the precise value of the arithmetic expression 3.4*unit_sold
in the result identifier.

The fields command displays the value of unit_sold and result in a tabular form.

Fig. 15: Exact function

12.14 round

This function accepts up to two numeric arguments, X and Y, as inputs. It then rounds
the value specified in X by the amount of decimal specified in Y. Here Y is optional, and
in case Y is not defined, it rounds the value of X to the nearest integer by default.

Syntax:

| process eval("identifier=round(X,Y)")

Example 1:

| process eval("x=round(12.233)")

Result: x=12

Example 2:

12.13. exact 66

Evaluation Process Plugin Documentation, Release release/3.0.0

| process eval("result=round(12.234,2)")

The above example rounds up 12.234 to the hundredths (second decimal place) and
returns its value in the result identifier.

Fig. 16: Round function

12.15 sigfig

This function accepts one numeric field X as input and rounds that number to the
appropriate number of significant figures.

Syntax:

| process eval("identifier=sigfig(X)")

• If X is of 1000th place, the function rounds it to the nearest 10.

Example 1:

| process eval("result=sigfig(1111)")

The above example rounds up 1111 to the nearest 10 and returns its value, i.e., 1110 in
the result identifier.

Fig. 17: Sigfig function

12.15. sigfig 67

Evaluation Process Plugin Documentation, Release release/3.0.0

• If X is of 10000th place, the function rounds it to the nearest 100.

Example 2:

| process eval("x=sigfig(11111)")

The above example rounds up 11111 to the nearest 100 and returns its value, i.e., 11100
in the result identifier.

Note: This function accepts only integer value as input. It ignores the decimal numbers
if provided and takes only the numbers before the decimal point. It does not round the
number that is in the 10th and 100th place.

12.15. sigfig 68

CHAPTER

THIRTEEN

TRIGONOMETRIC FUNCTIONS

The Trigonometric functions evaluate trigonometric and hyperbolic values.

13.1 sin

This function accepts one argument X as input and returns the sine of X.

Syntax:

| process eval("identifier=sin(X)")

Example:

| process eval("sin_value=sin(length)") | fields length, sin_value

The above example returns the sine of the length field in the sin_value identifier.

The fields command displays the value of length and sin_value in a tabular form.

Fig. 1: Sin function

13.2 sinh

This function accepts one argument X as input and returns the hyperbolic sine of X.

69

Evaluation Process Plugin Documentation, Release release/3.0.0

Syntax:

| process eval("identifier=sinh(X)")

Example:

| process eval("sinh_value=sinh(length)") | fields length, sinh_value

The above example returns the hyperbolic sine of the length field in the sinh_value
identifier.

Fig. 2: Sinh function

13.3 asin

This function accepts one argument X as input and returns the inverse sine of X. X must
be in the range from -1 to 1 inclusive.

Syntax:

| process eval("identifier=asin(X)")

Example:

| process eval("asin_value=asin(1)")

The above example returns the inverse sine of 1 in the asin_value identifier.

Fig. 3: Asin function

13.3. asin 70

Evaluation Process Plugin Documentation, Release release/3.0.0

13.4 asinh

This function accepts one argument X as input and returns the inverse hyperbolic sine
of X.

Syntax:

| process eval("identifier=asinh(X)")

Example:

| process eval("asinh_value=asinh(1)")

The above example returns the inverse hyperbolic sine of 1 in the asinh_value identifier.

Fig. 4: Asinh function

13.5 cos

This function accepts one argument X as input and returns the cosine of X.

Syntax:

| process eval("identifier=cos(X)")

Example:

| process eval("cos_value=cos(length)") | fields length, cos_value

The above example returns the cosine of the length field in the cos_value identifier.

The fields command displays the value of length and cos_value in a tabular form.

13.4. asinh 71

Evaluation Process Plugin Documentation, Release release/3.0.0

Fig. 5: Cos function

13.6 cosh

This function accepts one argument X as input and returns the hyperbolic cosine of X.

Syntax:

| process eval("identifier=cosh(X)")

Example:

| process eval("cosh_value=cosh(length)") | fields length, cosh_value

The above example returns the hyperbolic cosine of the length field in the cosh_value
identifier.

The fields command displays the value of length and cosh_value in a tabular form.

Fig. 6: Cosh function

13.7 acos

This function accepts one argument X as input and returns the inverse cosine of X. X
must be in the range from -1 to 1 inclusive.

13.6. cosh 72

Evaluation Process Plugin Documentation, Release release/3.0.0

Syntax:

| process eval("identifier=acos(X)")

Example:

| process eval("acos_value=acos(0)")

The above example returns the inverse cosine of 0 in the acos_value identifier.

Fig. 7: Acos function

13.8 acosh

This function accepts one argument X as input and returns the inverse hyperbolic cosine
of X.

Syntax:

| process eval("identifier=acosh(X)")

Example:

| process eval("acosh_value=acosh(1)")

The above example returns the inverse hyperbolic cosine of 1 in the acosh_value
identifier.

Fig. 8: Acosh function

13.8. acosh 73

Evaluation Process Plugin Documentation, Release release/3.0.0

13.9 tan

This function accepts one argument X as input and returns the tangent of X.

Syntax:

| process eval("identifier=tan(X)")

Example:

| process eval("tan_value=tan(length)")
| fields length, tan_value

The above example returns the tangent of the length field in the tan_value identifier.

The fields command displays the value of length and tan_value in a tabular form.

Fig. 9: Tan function

13.10 tanh

This function accepts one argument X as input and returns the hyperbolic tangent of X.

Syntax:

| process eval("identifier=tanh(X)")

Example:

| process eval("tanh_value=tanh(length)")
| fields length, tanh_value

The above example returns the hyperbolic tangent of the length field in the tanh_value
identifier.

The fields command displays the value of length and tanh_value in a tabular form.

13.9. tan 74

Evaluation Process Plugin Documentation, Release release/3.0.0

Fig. 10: Tanh function

13.11 atan

This function accepts one argument X as input and returns the inverse tangent of X.

Syntax:

| process eval("identifier=atan(X)")

Example:

| process eval("atan_value=atan(1)")

The above example returns the inverse tangent of 1 in the atan_value identifier.

Fig. 11: Atan function

13.12 atanh

This function accepts one argument X as input and returns the inverse hyperbolic
tangent of X.

Syntax:

13.11. atan 75

Evaluation Process Plugin Documentation, Release release/3.0.0

| process eval("identifier=atan(X)")

Example:

| process eval("atanh_value=atanh(1)")

The above example returns the inverse hyperbolic tangent of 1 in the atanh_value
identifier.

Fig. 12: Atanh function

13.13 hypot

This function accepts two arguments X and Y as inputs and returns the hypotenuse of a
right-angled triangle whose length and base are X and Y. It follows the equation of the
Pythagorean theorem, i.e., hypotenuse =

√
length2 + base2.

Syntax:

| process eval("identifier=hypot(X,Y)")

Example:

| process eval("hyp=hypot(3,4)")

The above example calculates the value of the hypotenuse of the triangle whose length
and base are 3 and 4 respectively and returns its value in the tan_value identifier.

Fig. 13: Hypot function

13.13. hypot 76

CHAPTER

FOURTEEN

DATE/TIME FUNCTIONS

The Date/Time functions evaluate the date and time values.

14.1 now

This function returns the UNIX time when the search starts. Unlike other functions, this
function does not take any argument.

Syntax:

| process eval("identifier=now()")

Example:

| process eval("search_time=now()")

The above example returns the UNIX time of the search process in the search identifier.

Fig. 1: Now function

14.2 relative_time

This function accepts two arguments, a UNIX time X, and a relative time specifier Y as
inputs, and returns a UNIX time by adding or deducting the value of Y from the value
of X.

77

Evaluation Process Plugin Documentation, Release release/3.0.0

Syntax:

| process eval("identifier=relative_time(X, Y)")

• The operator used in Y can be either + or -.

• The format specifier of time is s for a second, m for a minute, h for an hour, d for a
day and w for a week.

Example:

| process eval("result=relative_time(now(), '+1d')")

The above example adds time equivalent of 1 day to the current UNIX time and returns
it in the result identifier.

Fig. 2: Relative time function

14.3 strftime

This function accepts a UNIX time X and returns the time as a string using the date and
time format specified in Y. The UNIX time value must be in seconds.

Syntax:

| process eval("identifier=strftime(X, Y)")

Example:

| process eval("search_date=strftime(now(), 'YYYY/MM/DD')")

The above example accepts the current UNIX time and returns the time in YYYY/MM/DD
format in the search_date identifier.

14.3. strftime 78

Evaluation Process Plugin Documentation, Release release/3.0.0

Fig. 3: Strftime function for day in year

Example:

| process eval("search_date=strftime(now(), 'YYYY/MM/dd')")

The above example accepts the current UNIX time and returns the time in YYYY/MM/dd
format in the serach_date identifier.

Fig. 4: Strftime function for day in month

14.4 strptime

This function accepts a human readable time specified in X and converts it into a UNIX
timestamp using the date and time format specified in Y.

Syntax:

| process eval("identifier=strptime(X, Y)")

Example:

| process eval("searchtime=strptime('2017-12-12', 'yyyy-mm-dd')")

The above example accepts the human readable time and converts it to a UNIX
timestamp. It returns the converted time in the searchtime identifier.

14.4. strptime 79

Evaluation Process Plugin Documentation, Release release/3.0.0

Fig. 5: Strptime function

14.5 time

This function takes no argument and returns the UNIX time on which the eval process
command processes the command. The returned time is the time when the eval
command processed the event.

Syntax:

| process eval("identifier=time()")

Example:

| process eval("process_time=time()")

The above example returns the time of the eval command execution in the process_time
identifier.

Fig. 6: Time function

14.6 Date/Time patterns

The list of all possible patterns in the date/time function.

14.5. time 80

Evaluation Process Plugin Documentation, Release release/3.0.0

Letter Date or Time Component Presentation Examples
G Era designator Text AD
y Year Year 1996; 96
Y Week year Year 2009; 09
M Month in year (context sensitive) Month July; Jul; 07
L Month in year (standalone form) Month July; Jul; 07
w Week in year Number 27
W Week in month Number 2
D Day in year Number 189
d Day in month Number 10
F Day of week in month Number 2
E Day name in week Text Tuesday; Tue
u Day number of week (1 =Monday, …,

7 = Sunday)
Number 1

a Am/pm marker Text PM
H Hour in day (0-23) Number 0
k Hour in day (1-24) Number 24
K Hour in am/pm (0-11) Number 0
h Hour in am/pm (1-12) Number 12
m Minute in hour Number 30
s Second in minute Number 55
S Millisecond Number 978
z Time zone General time

zone
Pacific Standard
Time; PST;
GMT-08:00

Z Time zone RFC 822 time
zone

-0800

X Time zone ISO 8601
time zone

-08; -0800; -08:00

14.6. Date/Time patterns 81

CHAPTER

FIFTEEN

INFORMATIONAL FUNCTIONS

The Informational functions evaluate the information of arguments.

15.1 isbool

This function accepts one argument X as input and returns True if the value of X is
Boolean. If the value is not a Boolean, the function returns False.

Syntax:

| process eval("identifier=isbool(X)")

Example:

| process eval("is_loss=Selling_price<cost_price")
| process eval("boolean_result=isbool(is_loss)")
| chart count() by Selling_price, cost_price, is_loss, boolean_result

The above example first evaluates if the Selling_price is less than cost_price and
returns its value in the is_loss identifier. Then, the isbol function returns true in the
boolean_result identifier if the value in the is_loss field is Boolean. If the value is not a
Boolean, the function returns False

The chart count() command displays the count of the combination of Selling_price,
cost_price, is_loss, and boolean_result values as a chart and in a tabular form.

82

Evaluation Process Plugin Documentation, Release release/3.0.0

Fig. 1: Isbool function

15.2 isint

This function accepts one argument X as input and returns True if the value of X is an
integer. If the value is not an integer, the function returns False.

Syntax:

| process eval("identifier=isint(X)")

Example:

| process eval("isscore_int=isint(score)") | fields score, isscore_int

The above example returns true in the isscore_int identifier if the value in the score field
is an integer. If the value is not an integer, the function returns False.

The fields command displays the value of score and isscore_int in a tabular form.

15.2. isint 83

Evaluation Process Plugin Documentation, Release release/3.0.0

Fig. 2: Isint function

15.3 isnotnull

This function accepts one argument X as input and returns True if the value of X is not
null. If the value is null, the function returns False.

Syntax:

| process eval("identifier=isnotnull(X)")

Example:

| process eval("is_loss=Selling_price<cost_price")
| process eval("notnull_result=isnotnull(is_loss)")
| chart count() by Selling_price, cost_price, is_loss, notnull_result

The above example first evaluates if the Selling_price is less than cost_price and returns
its value in the is_loss identifier. Then, the isnotnull function returns true in the
notnull_result identifier if the value in the is_loss field is not null. If the value is null,
the function returns False.

The chart count() command displays the count of the combination of Selling_price,
cost_price, is_loss, and notnull_result values as a chart and in a tabular form.

15.3. isnotnull 84

Evaluation Process Plugin Documentation, Release release/3.0.0

Fig. 3: Isnotnull function

15.4 isnull

This function accepts one argument X as input and returns True if the value of X is null.
If the value is not null, the function returns False.

Syntax:

| process eval("identifier=isnull(X)")

Example:

| process eval("is_loss=Selling_price<cost_price")
| process eval("null_result=isnull(is_loss)")
| chart count() by Selling_price, cost_price, is_loss, null_result

The above example first evaluates if the Selling_price is less than cost_price and returns
its value in the is_loss identifier. Then, the isnull function returns true in the null_result
identifier if the value in the is_loss field is null. If the value is not null, the function returns
False.

The chart count() command displays the count of the combination of Selling_price,
cost_price, is_loss, and null_result values as a chart and in a tabular form.

15.4. isnull 85

Evaluation Process Plugin Documentation, Release release/3.0.0

Fig. 4: Isnull function

15.5 isnum

This function accepts one argument X as input and returns True if the value of X is a
number. If the value is not a number, the function returns False.

Syntax:

| process eval("identifier=isnum(X)")

Example:

| process eval("num_result=isnum(cost_price)") | chart count() by cost_price, num_result

The above example returns true in the num_result identifier if the value in the score field
is a number. If the value is not a number, the function returns False.

The chart count() command displays the count of the combination of cost_price and
num_result values as a chart and in a tabular form.

15.5. isnum 86

Evaluation Process Plugin Documentation, Release release/3.0.0

Fig. 5: Isnum function

15.6 isstr

This function accepts one argument X as input and returns True if the value of X is a
string. If the value is not a string, the function returns False.

Syntax:

| process eval("identifier=isstr(X)")

Example:

| process eval("str_result=isstr(cost_price)") | chart count() by cost_price, str_result

The above example returns true in the str_result identifier if the value in the cost_price
field is a string. If the value is not a string, the function returns False.

The chart count() command displays the count of the combination of cost_price and
str_result values as a chart and in a tabular form.

15.6. isstr 87

Evaluation Process Plugin Documentation, Release release/3.0.0

Fig. 6: Isstr function

15.7 typeof

This function accepts one argument X as input and returns the field type of the value of
X, such as integer, double, string and boolean.

Syntax:

| process eval("identifier=typeof(X)")

Example:

| process eval("event_type=typeof(event_id)") | fields event_id, event_type

The above example returns the field type of the event_id value in the event_type
identifier.

The fields command displays the value of event_id and event_type in a tabular form.

Fig. 7: Typeof function

15.7. typeof 88

CHAPTER

SIXTEEN

UNINSTALLING THE APPLICATION

16.1 Uninstalling the Evaluation Process Plugin
Application in LogPoint

1. Go to Settings >> System >> Applications.

2. Click the Uninstall () icon from the Actions column.

Fig. 1: Evaluation Process Plugin Uninstallation

89

	Evaluation Process Plugin
	Arithmetic expressions
	Addition (+)
	Subtraction (-)
	Multiplication (*)
	Division (/)
	Modulus (%)
	Power (^)

	Relational expressions
	Less than (<)
	Greater than (>)
	Less than or equal to (<=)
	Greater than or equal to (>=)
	Not equal to (!=)
	Equal to (==)

	Logical expressions
	AND (&&)
	OR (||)

	Conditional and Comparison functions
	If Statement
	If-else Statement
	If-elseif-else Statement
	Case Statement
	cidrmatch
	coalesce
	false
	in
	match
	like
	null
	nullif
	searchmatch
	true

	Multivalue functions
	split
	commands
	mvappend
	mvcount
	mvdedup
	mvfilter
	mvfind
	mvindex
	mvjoin
	mvrange
	mvsort
	mvzip

	Statistical functions
	max
	min

	Conversion functions
	printf
	tonumber
	tostring

	Expression with Parentheses
	String functions
	len
	substr
	lower
	upper
	trim
	ltrim
	rtrim
	replace
	spath
	urldecode

	Cryptographic functions
	md5
	sha1
	sha256
	sha512

	Mathematical functions
	abs
	floor
	ceiling
	exp
	exp2
	exp10
	log
	log2
	log10
	pi
	sqrt
	random
	exact
	round
	sigfig

	Trigonometric functions
	sin
	sinh
	asin
	asinh
	cos
	cosh
	acos
	acosh
	tan
	tanh
	atan
	atanh
	hypot

	Date/Time functions
	now
	relative_time
	strftime
	strptime
	time
	Date/Time patterns

	Informational functions
	isbool
	isint
	isnotnull
	isnull
	isnum
	isstr
	typeof

	Uninstalling the Application
	Uninstalling the Evaluation Process Plugin Application in LogPoint

