\¢ LOGPOINT
—

Integrations Universal REST API

V3.5.0 (latest)

CONTENTS

Universal REST API Fetcher 1
Installing Universal REST API Fetcher 2
Uninstalling Universal REST API Fetcher 3
Configuring Universal REST API Fetcher 4
41 SOUrCe . . ot e e e e e 4
4.2 Connector i e e e e e e e 5
43 Endpoints 8
44 Routing o i i i e e e e e e e 14
4.5 Normalization e e 16
4.6 Enrichment. e e 17
Accessing the Universal REST API Fetcher Logs 18
Supported Pagination Types 19
6.1 Page-based Pagination 19
6.2 Offset-based Pagination 20
6.3 Link-based Pagination 21
6.4 Cursor-basedpagination 0o, 23
Supported Authorization Types 26
7.1 APIKeyauthorization 26
7.2 Basic Authorization 27
7.3 Digest Authorization L 27
7.4 Oauth2 Authorization 27
7.5 Token Based Authorization oL 28
7.6 Custom Authorization e 28

CHAPTER
ONE

UNIVERSAL REST APl FETCHER

Universal REST API Fetcher provides a generic interface to fetch logs from cloud sources
via REST APIs. The cloud sources can have multiple endpoints, and every configured
source consumes one device license.

CHAPTER
TWO

INSTALLING UNIVERSAL REST API FETCHER

Prerequisite
Logpoint v7.4.0 and later

To install:
1. Download the .pak file from the Download section in Release Notes.
2. Go to Settings >> System Settings from the navigation bar and click Applications.
3. Click Import.

4. Browse to the downloaded .pak file.

5. Click Upload.

After installing Universal REST API Fetcher, you can find it under Settings >> System
Settings >> Plugins.

https://servicedesk.logpoint.com/hc/en-us/articles/6047943636253

CHAPTER
THREE

UNINSTALLING UNIVERSAL REST API FETCHER

To uninstall Universal REST API Fetcher, you must first remove its configurations and
also uninstall Duo Security and Cybereason.

To remove Universal REST API Fetcher configurations:
1. Go to Settings >> Log Sources from the navigation bar.
2. Click the () icon of Universal REST API Fetcher and click Delete.
3. Click Delete.

To uninstall Universal REST API Fetcher, Duo Security and Cybereason:

1. Go to Settings >> System Settings from the navigation bar and click Applications.

2. Click the Uninstall () icon in Actions of Universal REST API Fetcher, Duo Security
and Cybereason.

CHAPTER
FOUR

1.

CONFIGURING UNIVERSAL REST API FETCHER

Go to Settings >> Log Sources from the navigation bar and click Add Log Source.

2. Click Create New and select Universal Rest API.

4.1 Source

In source, add details about the log source from where the Universal REST API Fetcher
fetches logs.

1.

N o A WD

Click Source.

Enter the Log Source’s Name.

In Base URL, enter the RESTful API.

Enter Request Timeout (secs) for the APl request.

In Retry After(secs), enter the time to wait after an error or timeout.
Enter the Fetch Interval (min) and select Charset.

Select the Timezone of the log source if its response time is not in UTC. Universal
REST API Fetcher automatically sets the time in case of UTC.

Universal REST APl Documentation, Release latest

Create Log Source

Source) Connector Endpoints () Routing () Normalization Enrichment

* Name

UniversalRESTAPI

* Base URL

www.BaseURL.com

* Request Timeout (secs)

30

* Retry After (secs)

10

* Fetch Interval (min)
1
* Charset

utf_8

* Timezone

UTC TimeZone
Fig. 1: Configuring Source

4.2 Connector

In Connector, you must configure how the Universal REST API Fetcher and the log source
communicate with each other.

1. Click Connector.

2. Select the Authorization Type. For more information on supported Authorization
types in URAF, go here.

2.1. Select No Auth if no authentication is required.
2.2. Select Basic to use a username and password to authenticate.

2.2.1. In Credentials, enter the Username and Password.

4.2. Connector 5

Universal REST APl Documentation, Release latest

2.3. Select OAuth2 to authenticate using OAuth authentication. Enter the
following details in OAUTH 2.0 BASIC INFORMATION.

2.3.1. Enter the Token URL of the server.
2.3.2. Select either Client Credentials or Password Credentials as
the Grant Type.

2.3.2.1. If you select Client Credentials, enter the OAuth
secret password in Client Secret.

2.3.2.2. If you select Password Credentials, enter the OAuth
Username and Password.

2.3.3. In Client ID, enter the OAuth application ID or client ID. If the
vendor requires a client secret, enter Client Secret.

2.3.4. In API Key Prefix, enter the prefix to add to the authorization
header before the API Key or Token.

2.3.5. Select whether to send the client credentials as a basic auth
header or in the body.

2.3.6. Enter the extra parameters key and its value in ADDITIONAL
BODY FOR OAUTH 2.0.

2.4. Select Token Based to authenticate using an API token.

2.4.1. Enter the Token URL.

2.4.2. In Request Header, click Add Row and enter the Key and
Value of the request header used to send the access token.

2.4.3. In Request Body, click Add Row and enter the Key and Value
used to send the credentials to obtain the access token.

2.4.4. Enter the access token location in Access Token Response
Path. If the token is nested under a data key, use data.access_token.
In Access Token Expiry (min), enter the number of minutes to set
an expiry period for the API token.

2.4.5. In Access Token Field Name, enter the name of the field used
to send the access token.

2.5. Select the API Key to authenticate using an API Key.

2.5.1. In Secret Key, enter APl Key. This API key is used in the
authorization header.

2.5.2. In API Key Prefix, enter the prefix to add to the authorization
header before API Key or Token. This is optional.

2.6. Select Digest to authenticate using digest access authentication.
2.6.1. In Credentials, enter the Username and Password.

2.7. Select Custom to authenticate using integration that applies custom
authentication mechanisms and request handling.

2.7.1. Select a Product. Here, you can see the integrations
supported by Universal REST API Fetcher, such as Duo Security and
Cybereason, that require custom authentication mechanisms and
request handling. They must also be installed on Logpoint.

4.2. Connector 6

Universal REST APl Documentation, Release latest

3. Enter the RESTful API custom headers in Key and Value.
4. Enable Enforce HTTPS certificate verification to enable a secure connection.

5. If the server has a Self Signed Certificate, you can add an SSL Certificate
File. Select Click to Upload. Select a certificate file in PEM format (.pem) or
PEM-encoded .crt format. An SSL certificate enables an encrypted connection
between the server and Logpoint.

6. Enable Proxy to use a proxy server.

5.1. Select either HTTP or HTTPS protocol.
5.2. Enter the proxy server IP address and the PORT number.

Source Connector Endpoints o Routing Normalization Enrichment

* Authorization Type

No Auth

Headers

Custom headers

+ Add Row

Enforce HTTPS Certificate Verification

SSL Certificate File

I Click to Upload

Proxy

Enable Proxy

Protocol

PORT

Fig. 2: Configuring Connector

4.2. Connector 7

Universal REST APl Documentation, Release latest

4.3 Endpoints

In enpoints, configure details about the log source endpoints.

1. Click Endpoints and Add Row.
2. Enter the endpoint’s Name.

3. Select the HTTP request Method.
3.1. If you select GET, continue to Step 4.
3.2. If you select POST, enter the Post request body in JSON format.

You can define the time range for fetching logs in the Post request body:

* Use the Jinja keyword {{start}} for beginning of the log fetching
window.

* Use {{end}} for endpoint of the time range.
Example:

{

“filters": [
{

"fieldName": "<field>",

n, u

"operator": "<operator>",

"values": "[value]"

5

n n n n

search": "<value>",

n M M n n N n
sortingFieldName": "<field>",
"sortDirection": "<sort direction>",
"limit": "<limit>",

"offset": "<page number>"

Important: On the first request, {{start}} is replaced with the Initial
Fetch value set in the endpoint. In later requests, it is replaced with
the check sum value. The {{end}} value is always replaced with the
timestamp when the request is sent.

Example:

{

“filters": [
{

"fieldName": "StartTimestamp ",

n, u

"operator": "equals”,

(continues on next page)

4.3. Endpoints 8

Universal REST APl Documentation, Release latest

(continued from previous page)

"values": "{{start}}"

2
{
"fieldName": "EndTimestamp ",

"operator": "equals”,
"values": "{{end}}"
}
]
}

In this example, StartTimestamp and EndTimestamp are the
beginning and end of the fetch window.

4. Enter the Endpoint part of the previously added Base URL .
5. Enter a Description for the endpoint.

6. Under Headers, click + Add Row. Enter the Key and Value for each custom header.

Note:

* Avoid using common log filtering fields like start_date or end_date as headers.

* Do not add Authorization as a custom header.

7. In Query Parameters, click + Add Row.

7.1. Enter the Key and Value as required by the API.

Example:
For a query like /api/alerts?$filter=(severity eq ‘High’) or (severity eq
‘Medium’), enter:

o Key: $filter

e Value: (severity eq ‘High’) or (severity eq ‘Medium’)

Query parameters are sent as part of the request URL.

Important: To define a time range using query parameters:

* Use {{start}} for the start timestamp.
e Use {{end}} for the end timestamp.

Example:

4.3. Endpoints 9

Universal REST APl Documentation, Release latest

Key Value
StartTimestamp | {{start}}
EndTimestamp | {{end}}

You can also send multiple query parameters with the same key.

Example:

Query Parameters (2)

* Key

filter[created_at]

* Key

filter[created_at]

* Value

{{start}}

* Value

{lend}y

8. In Increment Value / Check Sum, enter the path to the field that tracks progress

in log fetching.

Example:

If the field is event_date within an Events object, enter Events.event_date. This
field's value from the most recent log is stored in the CheckSum database. During
the next collection cycle, it becomes the {{start}} value, ensuring no duplicate logs

are collected.

9. Enter the Response Key. This is used to locate and extract log records from the

APl response.

10. Enter the Custom Date Format expected in the API response.

Some of them are:

Date Type Format Example

uTC %Y-%m-%dT%H:%M:%SZ 2023-04-27T07:18:52Z

ISO-8601 %Y-%m-%dT%H:%M:%S %z 2023-04-27T07:18:52+Q

RFC 2822 %a, %d %b %Y %H:%M:%S %z Thu, 27 Apr 2023
07:18:52 +0000

RFC 850 %A, %d-%b-%y %H:%M:%S UTC | Thursday, 27-Apr-23
07:18:52 UTC

RFC 1036 %a, %d %b %y %H:%M:%S %z Thu, 27 Apr 23
07:18:52 +0000

RFC 1123 %a, %d %b %Y %H:%M:%S %z Thu, 27 Apr 2023

07:18:52 +0000

Continued on next page

4.3. Endpoints

10

000

Universal REST APl Documentation, Release latest

Table 1 - continued from previous page

Date Type Format Example
RFC 822 %a, %d %b %y %H:%M:%S %z Thu, 27 Apr 23
07:18:52 +0000
RFC 3339 %Y-%m-%dT%H:%M:%S %z 2023-04-27T07:18:52+00:00
ATOM %Y-%m-%dT%H:%M:%S %z 2023-04-27T07:18:52+00:00
COOKIE %A, %d-%b-%Y %H:%M:%S UTC | Thursday,
27-Apr-2023 07:18:52
uTC
RSS %a, %d %b %Y %H:%M:%S %z Thu, 27 Apr 2023
07:18:52 +0000
W3C %Y-%m-%dT%H:%M:%S %z 2023-04-27T07:18:52+00:00
YYYY-DD-MM %Y-%d-%m %H:%M:%S 2023-27-04 07:18:52
HH:MM:SS
YYYY-DD-MM %Y-%d-%m %I:%M:%S %p 2023-27-04 07:18:52
HH:MM:SS am/pm AM
DD-MM-YYYY %d-%m-%Y %H:%M:%S 27-04-2023 07:18:52
HH:MM:SS
MM-DD-YYYY %m-%d-%Y %H:%M:%S 04-27-2023 07:18:52
HH:MM:SS

11. In Logs Filtering Parameters, select the parameters to filter the incoming logs.

11.1. Select a Data format.

11.1.1. Select ISO Date to represent data using the International
Standards Organization (ISO) format of "yyyy-MM-dd”. Example:
2017-06-10.

Note: If you select ISO Date, then its value must be in the string
format in the Post request body.

11.1.2. Select UNIX Epoch to represent data using the UNIX epoch
time format. It is a system for measuring time as the number of
seconds that have elapsed since January 1, 1970, at 00:00:00 UTC
(Coordinated Universal Time). Example: 1672475384.

11.1.3. Select UNIX Epoch (ms) to represent data using the UNIX
epoch time format with milliseconds precision. It is a system for
measuring time as the number of milliseconds that have elapsed
since January 1, 1970, at 00:00:00 UTC (Coordinated Universal Time).
Example:1672475384000.

11.1.4. Select Custom Format to define your own format for
representing the data. The custom format can be created using
Date/Time patterns.

4.3. Endpoints

1

Universal REST APl Documentation, Release latest

11.1.5. Select Unique ID to represent data using a unique ID.

Note: If you select Unique ID here, then its value must be in the
number format in the Post request body.

12. Select an Initial Fetch date. Logs are fetched for the first time from this date.

13. For Link-based pagination, in Pagination Key, enter the URL or URI from the API
response that points to the next page of results. This value can come from response
body, response header links, or response headers.

However, the pagination key could also originate from other fields in the API
response depending on how the APl implements pagination.

For page-based, offset-based and cursor-based paginations, users only have to
configure Key and Value in Query Parameters.

e Key: The name of the query parameter used by the API to indicate the position
or page of results to fetch. This could represent a page number, an offset, or
a cursor, depending on the pagination type.

* Value: The dynamic value for the query parameter that determines the next
set of results. It is usually derived from the API response and can be a page
number, an offset count, or a cursor pointing to the next item in the dataset.

14. Click Save Changes.

4.3. Endpoints 12

Universal REST APl Documentation, Release latest

Endpoints)

* Name

events

Method * Endpoint 3

GET siem/v1/events

Description

Endpoint Description

Headers (%)

* Key * Value

X-Tenant-ID u)

+ Add Row

Query Parameters (7)

* Key * Value
from_date { start }} O
+ Add Row

* Increment Value / Check Sum (%)

items.created_at

Reset Checksum Value (%)

Response Key Custom Date Format

responsekey YY/MM/DD

Logs Filtering Parameters (3)

* Data format * Initial Fetch

UNIX Epoch 2023-08-07 12:57:21

Pagination (?)

Pagination key
Fig. 3: Configuring Endpoint

To edit the endpoint configuration, click the () icon under Action and click Edit. Make
the necessary changes and click Save Changes.

To delete the endpoint configuration, click the (i) icon under Action and click Delete.

4.3. Endpoints 13

Universal REST APl Documentation, Release latest

To reset the Checksum values, toggle Reset.

Reset Checksum Value (%)

Response Key Custom Date Format

responsekey YY/MM/DD

Logs Filtering Parameters ()

* Data format * Initial Fetch
UNIX Epoch 2023-08-07 12:57:21
Pagination (%)

Pagination key

Cancel Save Changes

Fig. 4: Reseting Checksum

4.4 Routing

Routing lets you create repos and routing criteria for URAF. Repos store incoming logs
and routing criteria determines where the logs are sent.

To create a repo:

1. Click Routing and + Create Repo.
Enter a Repo name.

In Path, enter the location to store incoming logs.

A W N

In Retention (Days), enter the number of days logs are kept in a repository before
they are automatically deleted.

o

In Availability, select the Remote logpoint and Retention (Days).

6. Click Create Repo.

4.4. Routing 14

Universal REST APl Documentation, Release latest

Create Repo

* Repo name

repo

Repo path
Path ® Retention (Days) @
/opt/immune/storage/ 1 o
+ Add repo path
Availability
Remote logpoint (7) Retention (Days) (%)

Fig. 5: Creating a Repo

In Repo, select the created repo to store logs.

To create Routing Criteria:

1. Click + Add row.

2. Enter a Key and Value. The routing criteria is only applied to those logs which have
this key-value pair.

3. Select an Operation for logs that have this key-value pair.

3.1. Select Store raw message to store both the incoming and the
normalized logs in the selected repo.

3.2. Select Discard raw message to discard the incoming logs and store
the normalized ones.

3.3. Select Discard entire event to discard both the incoming and the
normalized logs.

5. In Repository, select a repo to store logs.

4.4. Routing 15

Universal REST APl Documentation, Release latest

Save Changes

Source Connector Endpoints Routing Normalization Enrichment
+ Create Repo
* Repo
default
Routing Criteria: 4 Add row
Sort Key Value Operation Repository Action
Key Value Store raw message _logpoint)

Fig. 6: Creating a Routing Criteria

Click the (i) icon under Action to delete the created routing criteria.

4.5 Normalization

In normalization, you must select normalizers for the incoming logs. Normalizers
transform incoming logs into a standardized format for consistent and efficient analysis.

1. Click Normalization.

2. You can either select a previously created normalization policy from the Select
Normalization Policy dropdown or select a Normalizer from the list and click the
swap(H) icon.

4.5. Normalization 16

Universal REST APl Documentation, Release latest

Save Changes

Source Connector Endpoints Routing Normalization Enrichment

_logpoint
Normalizer
B 2/722 items Available 0/6 items Available
Q Q

ArubaClearPassCompiledNor... compiled = SoarCompiledNormalizer compiled o
ArubaOSCompiledNormalizer compiled = LP_Kernel regex o
CheckPointOpsecCompiledN... compiled = LP_LogPoint regex |
CheckPointInfinityCompiledN... compiled = LP_LogPointAlerts regex o
CheckpointFirewal[CEFComp... compiled = LP_WebServer Common Log ... regex a
JunOSCompiledNormalizer compiled = LP_LogPoint Audit regex o
JuniperScreenOSCompiledN... compiled

Fig. 7: Adding Normalizers

4.6 Enrichment

In enrichment, select an enrichment policy for the incoming logs. Enrichment adds
details like user information or geolocation to logs before analysis.

1. Click Enrichment.

2. Select an Enrichment Policy.

Click Create Log Source to save the configurations of Source, Connector, Endpoints,
Routing, Normalization and Enrichment.

4.6. Enrichment 17

https://docs.logpoint.comhttps://docs.logpoint.com/docs/data-integration-guide/en/latest/Configuration/Enrichment%20Policies.html

CHAPTER
FIVE

ACCESSING THE UNIVERSAL REST API FETCHER LOGS

Use the following query to access the logs:

col_type = rest_api_fetcher

© 9 2022/07/07 08:36:46
3
g log_ts=2022/07/07 08:36:46 ~ | device_ip=:1+ | device_name=rest_api_fetcher~ | col_type=rest_api_fetcher~ | repo_name=test | event_source=ciscoamp | api_endpoint=v1/audit_logs~ | col_ts=2022/07/07 08:36:46
& collected_at=LogPoint~ | logpoint_name=LogPoint

Fig. 1: Universal REST API Fetcher Sample Log

18

CHAPTER
SIX

SUPPORTED PAGINATION TYPES

Pagination is used in APl responses to divide a large dataset into smaller segments, like
pages, for consistent navigation. APl responses include pagination fields that specify
details, including the current page, page size, limit, next page link, and next cursor.

Supported Pagination Types
1. Page-based pagination
2. Offset-based pagination

3. Link-based pagination

4. Cursor-based pagination
6.1 Page-based Pagination
Page-based pagination divides a large dataset into small pages. To retrieve a specific

page, you must mention the page number in the API request.

Response example containing page information

{
"items": [

{
"created_at": "2025-03-25T10:51:17.043463+00:00",
"id": 73,
"value": "ltem 73"

4

{
"created_at": "2025-03-26T10:51:17.043469+00:00",
"id": 74,
"value": "ltem 74"

)

(continues on next page)

19

Universal REST APl Documentation, Release latest

(continued from previous page)

7
"pagination": {
"hasPotentiallyAnotherPage": true,

"page": (O,
"pageSize": 20
/
/
1. hasPotentiallyAnotherPage indicates if there is a next page. If

hasPotentiallyAnotherPage is true, the next request adds 1 to the page query
parameter for the subsequent fetch.

2. Page displays the current page number.

3. pageSize denotes the number of items per page.

Note: When configuring Query Parameter in URAF for the above response example,
the Key is page and the Value is {% if pagination__hasPotentiallyAnotherPage %}{
pagination__page + 1 }H{% endif %}.

6.2 Offset-based Pagination

Offset-based pagination uses an offset value that represents the number of pages to
skip from the start before fetching items.

Response example containing next offset

"items": [
{
"created_at": "2025-04-05T09:05:43.925874+00:00",
"id": 84,
"value": "ltem 84"

4,

{
"created_at": "2025-04-06T09:05:43.925876+00:00",
"id": 85,
"value": "Item 85"

),

"metadata”: {

(continues on next page)

6.2. Offset-based Pagination 20

Universal REST APl Documentation, Release latest

(continued from previous page)

"limit": 10,
"next_offset": 10,
"offset": 0,
"total": 17

1. limit refers to the number of items per page.

2. next_offset value is the numerical value you must use in the query parameter offset
to fetch the next set of pages.

3. total is the total number of items in a dataset.

Note: When configuring Query Parameter in URAF for the above response example,
the Key is offset and the Value is {{ metadata__next_offset }}.

6.3 Link-based Pagination

Link-based pagination uses complete URLs or URI paths in APl response to access
paginated logs. These links refer to the next, previous, and first or last pages in a
dataset.

Response example containing complete URLs

"data": [...],
"metadata”: {
"links": {
"next": "https://example.com/v1/audit_logs?limit=10&offset=10",
"prev": null
2
/

Response example containing URI path

"data":[...],
"metadata”: {
"links": {
"next": "v1/audit_logs?limit=10&offset=10",
"prev": null
2
/

6.3. Link-based Pagination 21

Universal REST APl Documentation, Release latest

Response example containing next page URL in response header link

Link: <http://ip_address:port/logs?page=2>; rel="next",
<http://ip_address:port/logs?page=1>; rel="prev"

Representated as json below

headers = {
'Link': '<http://ip_address:port/logs?page=2>; rel="next", <http://ip_address:port/logs?
—page=1>; rel="prev"’

}

Response example containing next page URI in response header link

Link: <logs?page=2>; rel="next",
<logs?page=1>; rel="prev"

Represented as json below

headers = {
'Link": '<logs?page=2>; rel="next", <logs?page=1>; rel="prev"

J

Response example of next page URL in a separate header key other than header
link

NextPageUri: https://ip:port/items?page=2&limit=10
Represented as json below
headers = {

'NextPageUri': 'https://ip:port/items?page=2&limit=10"
!

Response example of next page URI in a separate header key other than header link

NextPageUri: /items?page=2&limit=10
Represented as json below
headers = {

'NextPageUri'": '/items?page=2&limit=10"
/

6.3. Link-based Pagination 22

Universal REST APl Documentation, Release latest

6.4 Cursor-based pagination

Cursor-based pagination fetches the next page of results starting from the last item of

the previous page, referenced as a cursor. The cursor is a field such as a timestamp or
database ID.

Response example containing next_cursor

"items": [
{
"id": 1,
"value": "Item 1"
2
{

"id": 2,
"value": "ltem 2"

"metadata”: {
"next_cursor": 10

]
}

next_cursor is used to fetch the next page of results.

6.4. Cursor-based pagination 23

Universal REST APl Documentation, Release latest

Endpoints

Query Parameters (2)
* Key

cursor

* Increment Value / Check Sum ()

items.id

Reset Checksum Value (?)

Response Key

Logs Filtering Parameters (3)

* Data format * Initial Fetch

Unique ID 1

* Value

{ metadata__next_cursor }}

+ Add Row

Custom Date Format

Fig. 1: Cursor-based Pagination

Response example containing boolean field indicating there is next cursor

"items": [

{
"created_at": "2025-04-05T06:10:11.319668+00:00",
"id": 84,
"value": "Item 84"

4

{
"created_at": "2025-04-06T06:10:11.319671+00:00",
"id": 85,
"value": "Item 85"

)

"metadata”: {
"has_more": true,

(continues on next page)

6.4. Cursor-based pagination

24

Universal REST APl Documentation, Release latest

(continued from previous page)

"next_cursor": 93

]
}

The field has_more contains a boolean value, such as true or false. If it is true, the
next_cursor is used to request the next page. If it is false, no additional page is
requested.

Note: When configuring Query Parameter in URAF for the above response
example, the Key is cursor and the Value is {% if metadata__has_more %H{
metadata_ next_cursor }}{% endif %}.

6.4. Cursor-based pagination 25

CHAPTER
SEVEN

SUPPORTED AUTHORIZATION TYPES

Authorization grants or denies access to a system or application based on a user’s
permissions. Each authorization type uses a unique process to exchange and validate
credentials or tokens.

Supported Authorization Types
1. APl Key
2. Basic
3. Digest
4. Oauth2
5. Token Based

6. Custom

7.1 API Key authorization

API Key authorization uses a secret key (the API key) to identify and authorize a client
when making APl requests.

Example 1: Sending API Key in the header with the key Authorization

"headers": {
"Authorization": "Bearer abc123securekey”
/
!

Example 2: Sending API key in the header with a different key name

"headers": {
"x-api-key": "Bearer abcdsecret123key"
/

26

Universal REST APl Documentation, Release latest

7.2 Basic Authorization

Basic Authorization is an HTTP authentication method that sends a Base64-encoded
string containing the username and password in the “Authorization” header.

Example:

"headers": {
"Authorization": "Basic MTIXOWEyYjczYmEXYmILWESYjltMzg2NjkwYmFjM;Z;j"

]

7.3 Digest Authorization

Digest Authorization is an HTTP authentication method that applies hash and nonces to
the username and password to transmit credentials securely.

Example:

"headers": {

"Authorization": "Digest username=\"alice\", realm=\"example.com\", nonce=\

< "dcd98b7102dd2f0e8b 11d0f600bfb0c093\", uri=\"/data\", response=\

« "6629tae49393a05397450978507c4ef1\", gop=auth, nc=00000001, cnonce=\"0a4f113b\""

}

7.4 Oauth2 Authorization

OAuth 2.0 is an authorization framework that uses access tokens in headers and optional
refresh tokens. It allows applications limited access to a user’s data without exposing
their credentials.

Supported Grant Types in URAF 3.4.0

1. Client Credentials

2. Password Credentials

Example:

"headers": {
"Authorization": "Bearer ya29.a0AfH6SMCq_jJwEXAMPLE-TOKEN123456789"

}

7.2. Basic Authorization 27

Universal REST APl Documentation, Release latest

7.5 Token Based Authorization

Token-based authentication uses access tokens in headers. It allows you to access a log
source without repeatedly sending credentials.

URAF sends credentials to the API's authentication endpoint to obtain an access token:

Example:

POST https://api.example.com/auth/token
Content-Type: application/json

"username”: "logpoint_user”,
"password": "securePassword123"

}

The API returns an access token, which URAF includes in the Authorization header by
default when fetching logs:

Example:

GET https://api.example.com/logs
Authorization: Bearer eyJhbGciOiJlUzI1NilsInR5cCl6lkpXVCJ?9...

7.6 Custom Authorization

If an APl of a source requires an authentication method other than the supported
methods, URAF supports it via lightweight applications or integrations that run along
with URAF. After installing the application, you can select the vendor template in
URAF to create a log source and enter the credentials. For example, Cybereason and
DuoSecurity.

7.5. Token Based Authorization 28

https://docs.logpoint.comhttps://docs.logpoint.com/docs/cybereason/en/latest/index.html
https://docs.logpoint.comhttps://docs.logpoint.com/docs/duo-security/en/latest/index.html

	Universal REST API Fetcher
	Installing Universal REST API Fetcher
	Uninstalling Universal REST API Fetcher
	Configuring Universal REST API Fetcher
	Source
	Connector
	Endpoints
	Routing
	Normalization
	Enrichment

	Accessing the Universal REST API Fetcher Logs
	Supported Pagination Types
	Page-based Pagination
	Offset-based Pagination
	Link-based Pagination
	Cursor-based pagination

	Supported Authorization Types
	API Key authorization
	Basic Authorization
	Digest Authorization
	Oauth2 Authorization
	Token Based Authorization
	Custom Authorization

