
Integrations Universal REST API
V3.4.0

CONTENTS

1 Universal REST API Fetcher 1

2 Installing Universal REST API Fetcher 2

3 Uninstalling Universal REST API Fetcher 3

4 Configuring Universal REST API Fetcher 4
4.1 Source . 4
4.2 Connector . 5
4.3 Endpoints . 7
4.4 Routing . 14
4.5 Normalization . 16
4.6 Enrichment . 17

5 Accessing the Universal REST API Fetcher Logs 18

6 Supported Pagination Types 19
6.1 Page-based Pagination . 19
6.2 Offset-based Pagination . 20
6.3 Link-based Pagination . 21
6.4 Cursor-based pagination . 23

7 Supported Authorization Types 26
7.1 API Key authorization . 26
7.2 Basic Authorization . 27
7.3 Digest Authorization . 27
7.4 Oauth2 Authorization . 27
7.5 Custom Authorization . 28

i

CHAPTER

ONE

UNIVERSAL REST API FETCHER

Universal REST API Fetcher provides a generic interface to fetch logs from cloud sources
via REST APIs. The cloud sources can have multiple endpoints, and every configured
source consumes one device license.

1

CHAPTER

TWO

INSTALLING UNIVERSAL REST API FETCHER

Prerequisite

Logpoint v7.4.0 and later

To install:

1. Download the .pak file from the Download section in Release Notes.

2. Go to Settings >> System Settings from the navigation bar and click Applications.

3. Click Import.

4. Browse to the downloaded .pak file.

5. Click Upload.

After installing Universal REST API Fetcher, you can find it under Settings >> System
Settings >> Plugins.

2

https://servicedesk.logpoint.com/hc/en-us/articles/6047943636253

CHAPTER

THREE

UNINSTALLING UNIVERSAL REST API FETCHER

To uninstall Universal REST API Fetcher, you must first remove its configurations and
also uninstall Duo Security and Cybereason.

To remove Universal REST API Fetcher configurations:

1. Go to Settings >> Log Sources from the navigation bar.

2. Click the () icon of Universal REST API Fetcher and click Delete.

3. Click Delete.

To uninstall Universal REST API Fetcher, Duo Security and Cybereason:

1. Go to Settings >> System Settings from the navigation bar and click Applications.

2. Click the Uninstall () icon in Actions of Universal REST API Fetcher, Duo Security
and Cybereason.

3

CHAPTER

FOUR

CONFIGURING UNIVERSAL REST API FETCHER

1. Go to Settings >> Log Sources from the navigation bar and click Add Log Source.

2. Click Create New and select Universal Rest API.

4.1 Source

In source, add details about the log source from where the Universal REST API Fetcher
fetches logs.

1. Click Source.

2. Enter the Log Source’s Name.

3. In Base URL, enter the RESTful API.

4. Enter Request Timeout (secs) for the API request.

5. In Retry After(secs), enter the time to wait after an error or timeout.

6. Enter the Fetch Interval (min) and select Charset.

7. Select the Timezone of the log source if its response time is not in UTC. Universal
REST API Fetcher automatically sets the time in case of UTC.

4

Universal REST API Documentation, Release release/3.4.0

Fig. 1: Configuring Source

4.2 Connector

In Connector, youmust configure how the Universal REST API Fetcher and the log source
communicate with each other.

1. Click Connector.

2. Select the Authorization Type. For more information on supported Authorization
types in URAF, go here.

2.1. Select No Auth if no authentication is required.
2.2. Select Basic to use a username and password to authenticate.

2.2.1. In Credentials, enter the Username and Password.

4.2. Connector 5

Universal REST API Documentation, Release release/3.4.0

2.3. Select OAuth2 to authenticate using OAuth authentication. Enter the
following details in OAUTH 2.0 BASIC INFORMATION.

2.3.1. Enter the Token URL of the server.
2.3.2. Select either Client Credentials or Password Credentials as
the Grant Type.

2.3.2.1. If you select Client Credentials, enter the OAuth
secret password in Client Secret.
2.3.2.2. If you select Password Credentials, enter the OAuth
Username and Password.

2.3.3. In Client ID, enter the OAuth application ID or client ID. If the
vendor requires a client secret, enter Client Secret.
2.3.4. InAPI Key Prefix, enter the prefix to add to the authorization
header before the API Key or Token.
2.3.5. Select whether to send the client credentials as a basic auth
header or in the body.
2.3.6. Enter the extra parameters key and its value in ADDITIONAL
BODY FOR OAUTH 2.0.

2.4. Select the API Key to authenticate using an API Key.

2.4.1. In Secret Key, enter API Key. This API key is used in the
authorization header.
2.4.2. InAPI Key Prefix, enter the prefix to add to the authorization
header before API Key or Token. This is optional.

2.5. Select Digest to authenticate using digest access authentication.

2.5.1. In Credentials, enter the Username and Password.

2.6. Select Custom to authenticate using integration that applies custom
authentication mechanisms and request handling.

2.6.1. Select a Product. Here, you can see the integrations
supported by Universal REST API Fetcher, such as Duo Security and
Cybereason, that require custom authentication mechanisms and
request handling. They must also be installed on Logpoint.

3. Enter the RESTful API custom headers in Key and Value.

4. Enable Enforce HTTPS certificate verification to enable a secure connection.

5. Enable Proxy to use a proxy server.

5.1. Select either HTTP or HTTPS protocol.
5.2. Enter the proxy server IP address and the PORT number.

4.2. Connector 6

Universal REST API Documentation, Release release/3.4.0

Fig. 2: Configuring Connector

4.3 Endpoints

In enpoints, configure details about the log source endpoints.

1. Click Endpoints and Add Row.

2. Enter the endpoint’s Name.

3. Select the HTTP request Method.

3.1. If you select GET, continue to Step 4.

3.2. If you select POST, enter the Post request body in JSON format.

4.3. Endpoints 7

Universal REST API Documentation, Release release/3.4.0

You can define the time range for fetching logs in the Post request body:

• Use the Jinja keyword {{start}} for beginning of the log fetching
window.

• Use {{end}} for endpoint of the time range.
Example:

{
"filters": [
{
"fieldName": "<field>",
"operator": "<operator>",
"values": "[value]"
}
],
"search": "<value>",
"sortingFieldName": "<field>",
"sortDirection": "<sort direction>",
"limit": "<limit>",
"offset": "<page number>"
}

Important: On the first request, {{start}} is replaced with the Initial
Fetch value set in the endpoint. In later requests, it is replaced with
the check sum value. The {{end}} value is always replaced with the
timestamp when the request is sent.
Example:

{
"filters": [
{
"fieldName": "StartTimestamp",
"operator": "equals",
"values": "{{start}}"
},
{
"fieldName": "EndTimestamp",
"operator": "equals",
"values": "{{end}}"
}
]
}

In this example, StartTimestamp and EndTimestamp are the
beginning and end of the fetch window.

4. Enter the Endpoint part of the previously added Base URL .

4.3. Endpoints 8

Universal REST API Documentation, Release release/3.4.0

5. Enter a Description for the endpoint.

6. UnderHeaders, click+Add Row. Enter theKey andValue for each custom header.

Note:

• Avoid using common log filtering fields like start_date or end_date as headers.

• Do not add Authorization as a custom header.

7. In Query Parameters, click + Add Row.

7.1. Enter the Key and Value as required by the API.

Example:
For a query like /api/alerts?$filter=(severity eq ‘High’) or (severity eq
‘Medium’), enter:

• Key: $filter
• Value: (severity eq ‘High’) or (severity eq ‘Medium’)

Query parameters are sent as part of the request URL.

Important: To define a time range using query parameters:

• Use {{start}} for the start timestamp.
• Use {{end}} for the end timestamp.

Example:

Key Value
StartTimestamp {{start}}
EndTimestamp {{end}}

You can also send multiple query parameters with the same key.
Example:

4.3. Endpoints 9

Universal REST API Documentation, Release release/3.4.0

8. In Increment Value / Check Sum, enter the path to the field that tracks progress
in log fetching.

Example:

If the field is event_date within an Events object, enter Events.event_date. This
field’s value from the most recent log is stored in the CheckSum database. During
the next collection cycle, it becomes the {{start}} value, ensuring no duplicate logs
are collected.

9. Enter the Response Key. This is used to locate and extract log records from the
API response.

10. Enter the Custom Date Format expected in the API response.

Some of them are:

Date Type Format Example
UTC %Y-%m-%dT%H:%M:%SZ 2023-04-27T07:18:52Z
ISO-8601 %Y-%m-%dT%H:%M:%S%z 2023-04-27T07:18:52+0000
RFC 2822 %a, %d %b %Y %H:%M:%S %z Thu, 27 Apr 2023

07:18:52 +0000
RFC 850 %A, %d-%b-%y %H:%M:%S UTC Thursday, 27-Apr-23

07:18:52 UTC
RFC 1036 %a, %d %b %y %H:%M:%S %z Thu, 27 Apr 23

07:18:52 +0000
RFC 1123 %a, %d %b %Y %H:%M:%S %z Thu, 27 Apr 2023

07:18:52 +0000
RFC 822 %a, %d %b %y %H:%M:%S %z Thu, 27 Apr 23

07:18:52 +0000
RFC 3339 %Y-%m-%dT%H:%M:%S%z 2023-04-27T07:18:52+00:00
ATOM %Y-%m-%dT%H:%M:%S%z 2023-04-27T07:18:52+00:00
COOKIE %A, %d-%b-%Y %H:%M:%S UTC Thursday,

27-Apr-2023 07:18:52
UTC

RSS %a, %d %b %Y %H:%M:%S %z Thu, 27 Apr 2023
07:18:52 +0000

W3C %Y-%m-%dT%H:%M:%S%z 2023-04-27T07:18:52+00:00
YYYY-DD-MM
HH:MM:SS

%Y-%d-%m %H:%M:%S 2023-27-04 07:18:52

YYYY-DD-MM
HH:MM:SS am/pm

%Y-%d-%m %I:%M:%S %p 2023-27-04 07:18:52
AM

DD-MM-YYYY
HH:MM:SS

%d-%m-%Y %H:%M:%S 27-04-2023 07:18:52

MM-DD-YYYY
HH:MM:SS

%m-%d-%Y %H:%M:%S 04-27-2023 07:18:52

4.3. Endpoints 10

Universal REST API Documentation, Release release/3.4.0

11. In Logs Filtering Parameters, select the parameters to filter the incoming logs.

11.1. Select a Data format.

11.1.1. Select ISO Date to represent data using the International
Standards Organization (ISO) format of “yyyy-MM-dd”. Example:
2017-06-10.

Note: If you select ISO Date, then its value must be in the string
format in the Post request body.

11.1.2. Select UNIX Epoch to represent data using the UNIX epoch
time format. It is a system for measuring time as the number of
seconds that have elapsed since January 1, 1970, at 00:00:00 UTC
(Coordinated Universal Time). Example: 1672475384.
11.1.3. Select UNIX Epoch (ms) to represent data using the UNIX
epoch time format with milliseconds precision. It is a system for
measuring time as the number of milliseconds that have elapsed
since January 1, 1970, at 00:00:00 UTC (Coordinated Universal Time).
Example:1672475384000.
11.1.4. Select Custom Format to define your own format for
representing the data. The custom format can be created using
Date/Time patterns.
11.1.5. Select Unique ID to represent data using a unique ID.

Note: If you select Unique ID here, then its value must be in the
number format in the Post request body.

12. Select an Initial Fetch date. Logs are fetched for the first time from this date.

13. For Link-based pagination, in Pagination Key, enter the URL or URI from the API
response that points to the next page of results. This value can come from response
body, response header links, or response headers.

However, the pagination key could also originate from other fields in the API
response depending on how the API implements pagination.

For page-based, offset-based and cursor-based paginations, users only have to
configure Key and Value in Query Parameters.

• Key: The name of the query parameter used by the API to indicate the position
or page of results to fetch. This could represent a page number, an offset, or
a cursor, depending on the pagination type.

4.3. Endpoints 11

Universal REST API Documentation, Release release/3.4.0

• Value: The dynamic value for the query parameter that determines the next
set of results. It is usually derived from the API response and can be a page
number, an offset count, or a cursor pointing to the next item in the dataset.

14. Click Save Changes.

4.3. Endpoints 12

Universal REST API Documentation, Release release/3.4.0

Fig. 3: Configuring Endpoint

To edit the endpoint configuration, click the () icon under Action and click Edit. Make
the necessary changes and click Save Changes.

To delete the endpoint configuration, click the () icon under Action and click Delete.

4.3. Endpoints 13

Universal REST API Documentation, Release release/3.4.0

To reset the Checksum values, toggle Reset.

Fig. 4: Reseting Checksum

4.4 Routing

Routing lets you create repos and routing criteria for URAF. Repos store incoming logs
and routing criteria determines where the logs are sent.

To create a repo:

1. Click Routing and + Create Repo.

2. Enter a Repo name.

3. In Path, enter the location to store incoming logs.

4. In Retention (Days), enter the number of days logs are kept in a repository before
they are automatically deleted.

5. In Availability, select the Remote logpoint and Retention (Days).

6. Click Create Repo.

4.4. Routing 14

Universal REST API Documentation, Release release/3.4.0

Fig. 5: Creating a Repo

In Repo, select the created repo to store logs.

To create Routing Criteria:

1. Click + Add row.

2. Enter a Key and Value. The routing criteria is only applied to those logs which have
this key-value pair.

3. Select an Operation for logs that have this key-value pair.

3.1. Select Store raw message to store both the incoming and the
normalized logs in the selected repo.
3.2. Select Discard raw message to discard the incoming logs and store
the normalized ones.
3.3. Select Discard entire event to discard both the incoming and the
normalized logs.

5. In Repository, select a repo to store logs.

4.4. Routing 15

Universal REST API Documentation, Release release/3.4.0

Fig. 6: Creating a Routing Criteria

Click the () icon under Action to delete the created routing criteria.

4.5 Normalization

In normalization, you must select normalizers for the incoming logs. Normalizers
transform incoming logs into a standardized format for consistent and efficient analysis.

1. Click Normalization.

2. You can either select a previously created normalization policy from the Select
Normalization Policy dropdown or select a Normalizer from the list and click the
swap() icon.

4.5. Normalization 16

Universal REST API Documentation, Release release/3.4.0

Fig. 7: Adding Normalizers

4.6 Enrichment

In enrichment, select an enrichment policy for the incoming logs. Enrichment adds
details like user information or geolocation to logs before analysis.

1. Click Enrichment.

2. Select an Enrichment Policy.

Click Create Log Source to save the configurations of Source, Connector, Endpoints,
Routing, Normalization and Enrichment.

4.6. Enrichment 17

https://docs.logpoint.comhttps://docs.logpoint.com/docs/data-integration-guide/en/latest/Configuration/Enrichment%20Policies.html

CHAPTER

FIVE

ACCESSING THE UNIVERSAL REST API FETCHER LOGS

Use the following query to access the logs:

col_type = rest_api_fetcher

Fig. 1: Universal REST API Fetcher Sample Log

18

CHAPTER

SIX

SUPPORTED PAGINATION TYPES

Pagination is used in API responses to divide a large dataset into smaller segments, like
pages, for consistent navigation. API responses include pagination fields that specify
details, including the current page, page size, limit, next page link, and next cursor.

Supported Pagination Types

1. Page-based pagination

2. Offset-based pagination

3. Link-based pagination

4. Cursor-based pagination

6.1 Page-based Pagination

Page-based pagination divides a large dataset into small pages. To retrieve a specific
page, you must mention the page number in the API request.

Response example containing page information

{
"items": [
{
"created_at": "2025-03-25T10:51:17.043463+00:00",
"id": 73,
"value": "Item 73"

},
{
"created_at": "2025-03-26T10:51:17.043469+00:00",
"id": 74,
"value": "Item 74"

},
....

(continues on next page)

19

Universal REST API Documentation, Release release/3.4.0

(continued from previous page)

],
"pagination": {
"hasPotentiallyAnotherPage": true,
"page": 0,
"pageSize": 20

}
}

1. hasPotentiallyAnotherPage indicates if there is a next page. If
hasPotentiallyAnotherPage is true, the next request adds 1 to the page query
parameter for the subsequent fetch.

2. Page displays the current page number.

3. pageSize denotes the number of items per page.

Note: When configuring Query Parameter in URAF for the above response example,
the Key is page and the Value is {% if pagination__hasPotentiallyAnotherPage %}{{
pagination__page + 1 }}{% endif %}.

6.2 Offset-based Pagination

Offset-based pagination uses an offset value that represents the number of pages to
skip from the start before fetching items.

Response example containing next offset

"items": [
{
"created_at": "2025-04-05T09:05:43.925874+00:00",
"id": 84,
"value": "Item 84"

},
{
"created_at": "2025-04-06T09:05:43.925876+00:00",
"id": 85,
"value": "Item 85"

},
.....

],
"metadata": {

(continues on next page)

6.2. Offset-based Pagination 20

Universal REST API Documentation, Release release/3.4.0

(continued from previous page)

"limit": 10,
"next_offset": 10,
"offset": 0,
"total": 17

}

}

1. limit refers to the number of items per page.

2. next_offset value is the numerical value you must use in the query parameter offset
to fetch the next set of pages.

3. total is the total number of items in a dataset.

Note: When configuring Query Parameter in URAF for the above response example,
the Key is offset and the Value is {{ metadata__next_offset }}.

6.3 Link-based Pagination

Link-based pagination uses complete URLs or URI paths in API response to access
paginated logs. These links refer to the next, previous, and first or last pages in a
dataset.

Response example containing complete URLs

"data": [...],
"metadata": {
"links": {
"next": "https://example.com/v1/audit_logs?limit=10&offset=10",
"prev": null
},

}

Response example containing URI path

"data": [...],
"metadata": {
"links": {
"next": "v1/audit_logs?limit=10&offset=10",
"prev": null
},

}

6.3. Link-based Pagination 21

Universal REST API Documentation, Release release/3.4.0

Response example containing next page URL in response header link

Link: <http://ip_address:port/logs?page=2>; rel="next",
<http://ip_address:port/logs?page=1>; rel="prev"

Representated as json below

headers = {
'Link': '<http://ip_address:port/logs?page=2>; rel="next", <http://ip_address:port/logs?

↪→page=1>; rel="prev"'
}

Response example containing next page URI in response header link

Link: <logs?page=2>; rel="next",
<logs?page=1>; rel="prev"

Represented as json below

headers = {
'Link': '<logs?page=2>; rel="next", <logs?page=1>; rel="prev"'

}

Response example of next page URL in a separate header key other than header
link

NextPageUri: https://ip:port/items?page=2&limit=10

Represented as json below

headers = {
'NextPageUri': 'https://ip:port/items?page=2&limit=10'

}

Response example of next page URI in a separate header key other than header link

NextPageUri: /items?page=2&limit=10

Represented as json below

headers = {
'NextPageUri': '/items?page=2&limit=10'

}

6.3. Link-based Pagination 22

Universal REST API Documentation, Release release/3.4.0

6.4 Cursor-based pagination

Cursor-based pagination fetches the next page of results starting from the last item of
the previous page, referenced as a cursor. The cursor is a field such as a timestamp or
database ID.

Response example containing next_cursor

"items": [
{
"id": 1,
"value": "Item 1"

},
{
"id": 2,
"value": "Item 2"

},
......

],
"metadata": {
"next_cursor": 10

}
}

next_cursor is used to fetch the next page of results.

6.4. Cursor-based pagination 23

Universal REST API Documentation, Release release/3.4.0

Fig. 1: Cursor-based Pagination

Response example containing boolean field indicating there is next cursor

"items": [
{
"created_at": "2025-04-05T06:10:11.319668+00:00",
"id": 84,
"value": "Item 84"

},
{
"created_at": "2025-04-06T06:10:11.319671+00:00",
"id": 85,
"value": "Item 85"

},
.....

],
"metadata": {
"has_more": true,

(continues on next page)

6.4. Cursor-based pagination 24

Universal REST API Documentation, Release release/3.4.0

(continued from previous page)

"next_cursor": 93
}

}

The field has_more contains a boolean value, such as true or false. If it is true, the
next_cursor is used to request the next page. If it is false, no additional page is
requested.

Note: When configuring Query Parameter in URAF for the above response
example, the Key is cursor and the Value is {% if metadata__has_more %}{{
metadata__next_cursor }}{% endif %}.

6.4. Cursor-based pagination 25

CHAPTER

SEVEN

SUPPORTED AUTHORIZATION TYPES

Authorization grants or denies access to a system or application based on a user’s
permissions. Each authorization type uses a unique process to exchange and validate
credentials or tokens.

Supported Authorization Types

1. API Key

2. Basic

3. Digest

4. Oauth2

5. Custom

7.1 API Key authorization

API Key authorization uses a secret key (the API key) to identify and authorize a client
when making API requests.

Example 1: Sending API Key in the header with the key Authorization

"headers": {
"Authorization": "Bearer abc123securekey"

}
}

Example 2: Sending API key in the header with a different key name

"headers": {
"x-api-key": "Bearer abcdsecret123key"

}
}

26

Universal REST API Documentation, Release release/3.4.0

7.2 Basic Authorization

Basic Authorization is an HTTP authentication method that sends a Base64-encoded
string containing the username and password in the “Authorization” header.

Example:

"headers": {
"Authorization": "Basic MTIxOWEyYjczYmExYmlLWE5YjItMzg2NjkwYmFjMjZj"

}
}

7.3 Digest Authorization

Digest Authorization is an HTTP authentication method that applies hash and nonces to
the username and password to transmit credentials securely.

Example:

"headers": {
"Authorization": "Digest username=\"alice\", realm=\"example.com\", nonce=\
↪→"dcd98b7102dd2f0e8b11d0f600bfb0c093\", uri=\"/data\", response=\
↪→"6629fae49393a05397450978507c4ef1\", qop=auth, nc=00000001, cnonce=\"0a4f113b\""
}

7.4 Oauth2 Authorization

OAuth 2.0 is an authorization framework that uses access tokens in headers and optional
refresh tokens. It allows applications limited access to a user’s data without exposing
their credentials.

Supported Grant Types in URAF 3.4.0

1. Client Credentials

2. Password Credentials

Example:

"headers": {
"Authorization": "Bearer ya29.a0AfH6SMCq_jJwEXAMPLE-TOKEN123456789"
}

7.2. Basic Authorization 27

Universal REST API Documentation, Release release/3.4.0

7.5 Custom Authorization

If an API of a source requires an authentication method other than the supported
methods, URAF supports it via lightweight applications or integrations that run along
with URAF. After installing the application, you can select the vendor template in
URAF to create a log source and enter the credentials. For example, Cybereason and
DuoSecurity.

7.5. Custom Authorization 28

https://docs.logpoint.comhttps://docs.logpoint.com/docs/cybereason/en/latest/index.html
https://docs.logpoint.comhttps://docs.logpoint.com/docs/duo-security/en/latest/index.html

	Universal REST API Fetcher
	Installing Universal REST API Fetcher
	Uninstalling Universal REST API Fetcher
	Configuring Universal REST API Fetcher
	Source
	Connector
	Endpoints
	Routing
	Normalization
	Enrichment

	Accessing the Universal REST API Fetcher Logs
	Supported Pagination Types
	Page-based Pagination
	Offset-based Pagination
	Link-based Pagination
	Cursor-based pagination

	Supported Authorization Types
	API Key authorization
	Basic Authorization
	Digest Authorization
	Oauth2 Authorization
	Custom Authorization

